Advertisement

GeoInformatica

, Volume 17, Issue 1, pp 173–205 | Cite as

Users plan optimization for participatory urban texture documentation

  • Houtan Shirani-MehrEmail author
  • Farnoush Banaei-Kashani
  • Cyrus Shahabi
Article
  • 273 Downloads

Abstract

We envision participatory texture documentation (PTD) as a process in which a group of users (dedicated individuals and/or general public) with camera-equipped mobile phones participate in collaborative collection of urban texture information. PTD enables inexpensive, scalable and high quality urban texture documentation. We propose to implement PTD in two steps. At the first step, termed viewpoint selection, a minimum number of viewpoints in the urban environment are selected from which the texture of the entire urban environment (the part visible to cameras) with a desirable quality can be collected/captured. At the second step, called viewpoint assignment, the selected viewpoints are assigned to the participating users such that given a limited number of users with various constraints (e.g., restricted available time) users can collectively capture the maximum amount of texture information within a limited time interval. In this paper, we define each of these steps and prove that both are NP-hard problems. Accordingly, we propose efficient algorithms to implement the viewpoint selection and assignment problems. We study, profile and verify our proposed solutions comparatively by both rigorous analysis and extensive experiments.

Keywords

Participatory data collection Texture documentation Sensor placement Location-based services Participation plan optimization Optimization 

References

  1. 1.
    Banaei-Kashani F, Shirani-Mehr H, Pan B, Bopp N, Nocera L, Shahabi C (2010) Geosim: a geospatial data collection system for participatory urban texture documentation. Special Issue of IEEE Data Eng Bull 33(2):40–45Google Scholar
  2. 2.
    Blum A, Chawla S, Karger DR, Lane T, Meyerson A, Minkoff M (2003) Approximation algorithms for orienteering and discounted-reward tsp. In: FOCS, pp 46–55Google Scholar
  3. 3.
    Borgstrom PH, Singh A, Jordan BL, Sukhatme GS, Batalin MA, Kaiser WJ (2008) Energy based path planning for a novel cabled robotic system. In: IROS, pp 1745–1751Google Scholar
  4. 4.
    Chakravarty S, Shekhawat A (1992) Parallel and serial heuristics for the minimum set cover problem. J Supercomput 5(4):331–345CrossRefGoogle Scholar
  5. 5.
    Chao I, Golden BL, Wasil EA (1996) The team orienteering problem. Eur J Oper Res 88(3):464–474CrossRefGoogle Scholar
  6. 6.
    Chao IM, Golden BL, Wasil EA (1996) A fast and effective heuristic for the orienteering problem. Eur J Oper Res 88(3):475–489CrossRefGoogle Scholar
  7. 7.
    Chekuri C, Korula N, Pál M (2008) Improved algorithms for orienteering and related problems. In: SODA 2008. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp 661–670Google Scholar
  8. 8.
    Chekuri C, Pal M (2005) A recursive greedy algorithm for walks in directed graphs. In: FOCS 2005. IEEE Computer Society, Washington, DC, USA, pp 245–253Google Scholar
  9. 9.
    Chen K, Har-Peled S (2008) The euclidean orienteering problem revisited. SIAM J Comput 38(1):385–397CrossRefGoogle Scholar
  10. 10.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, 2nd edn. McGraw-Hill Science/Engineering/MathGoogle Scholar
  11. 11.
    Dhillon SS, Chakrabarty K (2003) Sensor placement for effective coverage and surveillance in distributed sensor networks. Wireless communications and networking, 2003. WCNC 2003, vol 3. IEEE, pp 1609–1614Google Scholar
  12. 12.
    Engel J, Pasewaldt S, Trapp M, Döllner J (2012) An immersive visualization system for virtual 3d city models. In: Proceedings of the 20th international conference on GeoInformatics. IEEE GRSSGoogle Scholar
  13. 13.
    Evans W, Kirkpatrick D, Townsend G (1997) Right triangular irregular networks. Tech. rep., Algorithmica, Tucson, AZ, USAGoogle Scholar
  14. 14.
    Fischetti M, Gonzalez JJS, Toth P (1998) Solving the orienteering problem through branch-and-cut. INFORMS J Comput 10(2):133–148CrossRefGoogle Scholar
  15. 15.
    Forsyth DA, Ponce J (2002) Computer vision: a modern approach. Prentice Hall Professional Technical ReferenceGoogle Scholar
  16. 16.
    Fowler RJ, Little JJ (1979) Automatic extraction of irregular network digital terrain models. In: SIGGRAPH ’79: proceedings of the 6th annual conference on Computer graphics and interactive techniques. ACM, New York, NY, USA, pp 199–207CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Leachtenauer JC, Driggers RG (2001) Surveillance and reconnaissance imaging systems: modeling and performance prediction. Artech House, BostonGoogle Scholar
  19. 19.
    Guestrin C, Krause A, Singh AP (2005) Near-optimal sensor placements in gaussian processes. In: ICML 2005. ACM, New York, NY, USA, pp 265–272CrossRefGoogle Scholar
  20. 20.
    Guillou E, Meneveaux D, Maisel E, Bouatouch K (2000) Using vanishing points for camera calibration and coarse 3d reconstruction from a single image. Vis Comput 16(7):396–410CrossRefGoogle Scholar
  21. 21.
    Hecht E (2002) Optics. Addison-WesleyGoogle Scholar
  22. 22.
    Hörster E, Lienhart R (2006) On the optimal placement of multiple visual sensors. In: VSSN 2006. ACM, New York, NY, USA, pp 111–120CrossRefGoogle Scholar
  23. 23.
    Huang CF, Tseng YC (2003) The coverage problem in a wireless sensor network. In: WSNA 2003. ACM, New York, NY, USA, pp 115–121CrossRefGoogle Scholar
  24. 24.
    Krause A, Guestrin C (2009) Optimizing sensing: from water to the web. Comput 42:38–45CrossRefGoogle Scholar
  25. 25.
    Krause A, Rajagopal R, Gupta A, Guestrin C (2009) Simultaneous placement and scheduling of sensors. In: IPSN ’09: proceedings of the 2009 international conference on information processing in sensor networks. IEEE Computer Society, Washington, DC, USA, pp 181–192Google Scholar
  26. 26.
    Lee DT, Lin AK (1986) Computational complexity of art gallery problems. IEEE Trans Inf Theory 32(2):276–282CrossRefGoogle Scholar
  27. 27.
    Lee JS, Hoh B (2010) Dynamic pricing incentive for participatory sensing. J Perv Mob Comp 6:693–708CrossRefGoogle Scholar
  28. 28.
    Meguerdichian S, Koushanfar F, Potkonjak M, Srivastava MB (2001) Coverage problems in wireless ad-hoc sensor networks. In: INFOCOM, pp 1380–1387Google Scholar
  29. 29.
    Murray AT, Kim K, Davis JW, Machiraju R, Parent RE (2007) Coverage optimization to support security monitoring. Comput Environ Urban Syst 31(2):133–147CrossRefGoogle Scholar
  30. 30.
    Samet H, Sankaranarayanan J, Alborzi H (2008) Scalable network distance browsing in spatial databases. In: SIGMOD conference, pp 43–54Google Scholar
  31. 31.
    Semmo A, Trapp M, Kyprianidis JE, Döllner J (2012) Interactive visualization of generalized virtual 3d city models using level-of-abstraction transitions. ACM GIS 31(3):885–894Google Scholar
  32. 32.
    Shirani-Mehr H, Banaei-Kashani F, Shahabi C (2009) Efficient viewpoint assignment for urban texture documentation. In: GIS ’09: proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp 62–71Google Scholar
  33. 33.
    Shirani-Mehr H, Banaei-Kashani F, Shahabi C (2009) Efficient viewpoint selection for urban texture documentation. In: Third international conference on geosensor networksGoogle Scholar
  34. 34.
    Singh A, Krause A, Guestrin C, Kaiser WJ (2009) Efficient informative sensing using multiple robots. J Artif Intell Res 34(1):707–755Google Scholar
  35. 35.
    Singh A, Krause A, Kaiser WJ (2009) Nonmyopic adaptive informative path planning for multiple robots. In: IJCAI’09: proceedings of the 21st international jont conference on Artifical intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 1843–1850Google Scholar
  36. 36.
    Spiegel MR (1992) Mathematical handbook of formulas and tables, 28th printing edn. McGraw HillGoogle Scholar
  37. 37.
    Tan PN, Steinbach M, Kumar V (2005) Introduction to Data Mining, 1st edn. Addison WesleyGoogle Scholar
  38. 38.
    Tsai F, Lin HC (2007) Polygon-based texture mapping for cyber city 3d building models. Int J Geogr Inf Sci 21(9):965–981CrossRefGoogle Scholar
  39. 39.
    Vansteenwegen P, Souffriau W, Berghe GV, Oudheusden DV (2009) A guided local search metaheuristic for the team orienteering problem. Eur J Oper Res 196(1):118–127CrossRefGoogle Scholar
  40. 40.
    Wolff RW (1990) A note on pasta and anti-pasta for continuous-time markov chains. Oper Res 38(1):176–177CrossRefGoogle Scholar
  41. 41.
    Wu CH, Lee KC, Chung YC (2007) A delaunay triangulation based method for wireless sensor network deployment. Comput Commun 30(14–15):2744–2752CrossRefGoogle Scholar
  42. 42.
    Zhang B, Sukhatme GS (2008) Adaptive sampling with multiple mobile robots. In: IEEE international conference on robotics and automationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Houtan Shirani-Mehr
    • 1
    Email author
  • Farnoush Banaei-Kashani
    • 1
  • Cyrus Shahabi
    • 1
  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations