, 13:223 | Cite as

Urban granularities—a data structure for cognitively ergonomic route directions

  • Alexander KlippelEmail author
  • Stefan Hansen
  • Kai-Florian Richter
  • Stephan Winter


This paper addresses a data structure specification for route directions that incorporates essential aspects of cognitive information processing. Specifically, we characterize levels of granularity in route directions as the result of the hierarchical organization of urban spatial knowledge. We discuss changes of granularity in route directions that result from combining elementary route information into higher-order elements (so called spatial chunking). We provide a framework that captures the pertinent aspects of spatial chunking. The framework is based on established principles used—from a cognitive perspective—for changing the granularity in route directions. The data structure we specify based on this framework allows us to bridge the gap between results from behavioral cognitive science studies and requirements of information systems. We discuss the theoretical underpinning of the core elements of the data structure and provide examples for its application.


Route directions Spatial structure Granularity Spatial chunking 



This work has been supported by the Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition, which is funded by the Deutsche Forschungsgemeinschaft (DFG), by the Cooperative Research Centre for Spatial Information, whose activities are funded by the Australian Commonwealth’s Cooperative Research Centres Programme, and by Lisasoft, Australia. OpenLS is a trademark of the Open Geospatial Consortium.


  1. 1.
    Agrawala M, Stolte C (2001) Rendering effective route maps: improving usability through generalization. In: SIGGRAPH 2001, Los Angeles, California, USAGoogle Scholar
  2. 2.
    Allen GL (2000) Principles and practices for communicating route knowledge. Appl Cogn Psychol 14(4):333–359CrossRefGoogle Scholar
  3. 3.
    Brunet R (1987) La carte, mode d’emploi. Fayard–Reclus, ParisGoogle Scholar
  4. 4.
    Bychowski T (2003) OpenGIS location services (OpenLS): part 6 – navigation service. Technical report, Open GIS Consortium Inc. OGC Implementation Specification 03-007r1 (Version 0.5.0)Google Scholar
  5. 5.
    Caduff D, Timpf S (2005) The landmark spider: representing landmark knowledge for wayfinding tasks. In: Barkowsky T, Freksa C, Hegarty M, Lowe R (eds) Reasoning with mental and external diagrams: computational modeling and spatial assistance. Papers from the 2005 AAAI spring symposium, Menlo Park, CA, pp 30–35Google Scholar
  6. 6.
    Clark A (1989) Microcognition: philosophy, cognitive science, and parallel distributed processing. MIT Press, Cambridge, MAGoogle Scholar
  7. 7.
    Cornell EH, Heth CD, Alberts DM (1994) Place recognition and wayfinding by children and adults. Mem & Cog 22:633–643Google Scholar
  8. 8.
    Dale R, Geldof S, Prost J-P (2003) Coral: using natural language generation for navigational assistance. In: Oudshoorn M (ed) Proceedings of the 26th Australasian computer science conference (ACSC2003), Adelaide, AustraliaGoogle Scholar
  9. 9.
    Dale R, Geldof S, Prost J-P (2005) Using natural language generation in automatic route description. Journal of Research and Practice in Information Technology 37(1):89–105Google Scholar
  10. 10.
    Daniel MP, Denis M (1998) Spatial descriptions as navigational aids: a cognitive analysis of route directions. Kognitionswissenschaft 7(1):45–52CrossRefGoogle Scholar
  11. 11.
    Denis M (1997) The description of routes: a cognitive approach to the production of spatial discourse. Cah Psychol Cogn 16:409–458Google Scholar
  12. 12.
    Dershowitz N (1993) A taste of rewrite systems. In: Layer PE (ed) Functional programming, concurrency, simulation and automated reasoning: international lecture series 1991–1992. Springer, Berlin, pp 199–228Google Scholar
  13. 13.
    Duckham M, Kulik L (2003) Simplest paths: automated route selection for navigation. In: Kuhn W, Worboys M, Timpf S (eds) Spatial information theory. LNCS 2825. Springer, Berlin, pp 169–185Google Scholar
  14. 14.
    Freksa C, Barkowsky T (1996) On the relation between spatial concepts and geographic objects. In: Burrough P, Frank AU (eds) Geographic objects with indeterminate boundaries. Taylor & Francis, London, pp 109–121Google Scholar
  15. 15.
    Furlan A, Baldwin T, Klippel A (2007) Landmark classification for route description generation. In: Proceedings of the fourth ACL-SIGSEM workshop on prepositions. Prague, Czech Republic, pp 9–16Google Scholar
  16. 16.
    Habel C (2003) Incremental generation of multimodal route instructions. In: Natural language generation in spoken and written dialogue, Palo Alto, CA, 2003. AAAI Spring SymposiumGoogle Scholar
  17. 17.
    Halford GS, Wilson WH, Phillips S (1998) Processing capacity defined by relational complexity: implications for comparative, developmental, and cognitive psychology. Behav Brain Sci 21(6):803–865Google Scholar
  18. 18.
    Hansen S, Klippel A, Richter K-F (2006) Cognitive OpenLS specification. Technical report 012-10/2006, SFB/TR 8 spatial cognition. Universität BremenGoogle Scholar
  19. 19.
    Hansen S, Richter K-F, Klippel A (2006) Landmarks in OpenLS — a data structure for cognitive ergonomic route directions. In: Raubal M, Miller H, Frank AU, Goodchild MF (eds) Geographic information science - fourth international conference, GIScience 2006. LNCS 4197. Springer, Berlin, pp 128–144Google Scholar
  20. 20.
    Haque S, Kulik L, Klippel A (2007) Algorithms for reliable navigation and wayfinding. In: Barkowsky T, Knauff M, Ligozat G, Montello DR (eds) Proceedings of spatial cognition 2006. LNCS 4387. Springer, Berlin, pp 308–326Google Scholar
  21. 21.
    Hobbs JR (1985) Granularity. In: Joshi AK (ed) Proceedings of 9th international joint conference on artificial intelligence. Morgan Kaufmann, San Francisco, pp 432–435Google Scholar
  22. 22.
    Höök K (1991) An approach to a route guidance interface. Licentiate thesis, Dept. of computer and system sciences, Stockholm UniversityGoogle Scholar
  23. 23.
    Johnson-Laird PN (1983) Mental models. Harvard University Press, Cambridge, MAGoogle Scholar
  24. 24.
    Klein W (1979) Wegauskünfte. Zeitschrift für Literaturwissenschaft und Linguistik 33:9–57Google Scholar
  25. 25.
    Klippel A, Montello DR (2007) Linguistic and nonlinguistic turn direction concepts. In: Winter S, Kuipers B, Duckham M, Kulik L (eds) Spatial information theory. LNCS 4736. Springer, Berlin, pp 354–372CrossRefGoogle Scholar
  26. 26.
    Klippel A, Richter K-F, Hansen S Cognitively ergonomic route directions. In: Karimi HA (ed) Encyclopedia of geoinformatics. Idea Group Reference (to appear)Google Scholar
  27. 27.
    Klippel A, Tappe H, Habel C (2003) Pictorial representations of routes: chunking route segments during comprehension. In: Freksa C, Brauer W, Habel C, Wender KF (eds) Spatial Cognition III. LNAI 12685. Springer, Berlin, pp 11–33CrossRefGoogle Scholar
  28. 28.
    Klippel A, Tappe H, Kulik L, Lee PU (2005) Wayfinding choremes - a language for modeling conceptual route knowledge. J Vis Lang Comput 16(4):311–329CrossRefGoogle Scholar
  29. 29.
    Kuipers B (2000) The spatial semantic hierarchy. Artif Intel 119(1–2):191–233CrossRefGoogle Scholar
  30. 30.
    Kuipers B, Levitt TS (1988) Navigation and mapping in large scale space. AI Magazine 9(2): 25–43Google Scholar
  31. 31.
    Leiser D, Zilbershatz A (1989) The traveller: a computational model of spatial network learning. Environ Behav 21(4):435–463CrossRefGoogle Scholar
  32. 32.
    Lovelace KL, Hegarty M, Montello DR (1999) Elements of good route directions in familiar and unfamiliar environments. In: Freksa C, Mark DM (eds) Spatial information theory. LNCS 1661. Springer, Berlin, pp 65–82 (August)Google Scholar
  33. 33.
    Lynch K (1960) The image of the city. MIT Press, CambridgeGoogle Scholar
  34. 34.
    Mabrouk M (2005) OpenGIS location services (OpenLS): core services. Technical report, Open GIS Consortium Inc., OGC implementation specification 05-016 version 1.1Google Scholar
  35. 35.
    MacMahon M, Stankiewicz BJ, Kuipers B (2006) Walk the talk: connecting language, knowledge, and action in route instructions. In: Proceedings of the 21st national conf. on artificial intelligence (AAAI ’06), Boston, MA, 16–20 July 2006Google Scholar
  36. 36.
    Mark DM (1986) Automated route selection for navigation. IEEE Aerosp Electron Syst Mag 1:2–5CrossRefGoogle Scholar
  37. 37.
    Michon P-E, Denis M (2001) When and why are visual landmarks used in giving directions? In: Montello DR (ed) Spatial information theory. LNCS 2205. Springer, Berlin, pp 400–414CrossRefGoogle Scholar
  38. 38.
    Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97CrossRefGoogle Scholar
  39. 39.
    Montello DR, Goodchild MF, Gottsegen J, Fohl P (2003) Where’s downtown?: behavioral methods for determining referents of vague spatial queries. Spatial Cogn Comput 3(2&3): 185–204CrossRefGoogle Scholar
  40. 40.
    Newman EL, Caplan JB, Kirschen MP, Koroley IO, Sekuler R, Kahana MJ (2007) Learning your way around town: how virtual taxicab drivers learn to use both layout and landmark information. Cognition 104:231–253CrossRefGoogle Scholar
  41. 41.
    Patel K, Chen MY, Smith I, Landay JA (2006) Personalizing routes. In: UIST ’06: proceedings of the 19th annual ACM symposium on user interface software and technology, ACM Press, New York, NY, USA, pp 187–190CrossRefGoogle Scholar
  42. 42.
    Richter K-F (2007) From turn-by-turn directions to overview information on the way to take. In: Gartner G, Cartwright W, Peterson MP (eds) Location based services and teleCartography. Springer, Berlin, pp 205–214CrossRefGoogle Scholar
  43. 43.
    Richter K-F (2007) A uniform handling of different landmark types in route directions. In: Winter S, Duckham M, Kulik L, Kuipers B (eds) Spatial information theory. LNCS 4736. Springer, Berlin, pp 373–389CrossRefGoogle Scholar
  44. 44.
    Richter K-F, Klippel A (2005) A model for context-specific route directions. In: Freksa C, Knauff M, Krieg-Brückner B, Nebel B, Barkowsky T (eds) Spatial cognition IV. LNAI 3343. Springer, Berlin, pp 58–78Google Scholar
  45. 45.
    Richter K-F, Klippel A (2007) Before or after: prepositions in spatially constrained systems. In: Barkowsky T, Knauff M, Ligozat G, Montello DR (eds) Spatial cognition V. LNAI 4387. Springer, Berlin, pp 453–469CrossRefGoogle Scholar
  46. 46.
    Richter K-F, Tomko M, Winter S A dialog-driven process of generating route directions. Computers Environ Urban Syst (to appear)Google Scholar
  47. 47.
    Schmid F, Richter K-F (2006) Extracting places from location data streams. In: UbiGIS 2006 - Second international workshop on ubiquitous geographical information services, 2006. Workshop at GIScienceGoogle Scholar
  48. 48.
    Schmidtke HR, Tschander L, Eschenbach C, Habel C (2003) Change of orientation. In: van der Zee E, Slack J (eds) Representing direction in language and space. Oxford University Press, Oxford, pp 166–190Google Scholar
  49. 49.
    Srinivas S, Hirtle SC (2007) Knowledge based schematization of routes. In: Barkowsky T, Knauff M, Ligozat G, Montello DR (eds) Spatial cognition V. LNAI 4387. Springer, Berlin, pp 346–364CrossRefGoogle Scholar
  50. 50.
    Taylor HA, Tversky B (1992) Spatial mental models derived from survey and route descriptions. J Memory Lang 31:261–292CrossRefGoogle Scholar
  51. 51.
    Thorndyke PW, Hayes-Roth B (1982) Differences in spatial knowledge acquired from maps and navigation. Cogn Psychol 14:560–589CrossRefGoogle Scholar
  52. 52.
    Timpf S, Kuhn W (2003) Granularity transformations for routes. In: Freksa C, Brauer W, Habel C, Wender KF (eds) Spatial cognition III. LNAI 2685. Springer, Berlin, pp 77–88CrossRefGoogle Scholar
  53. 53.
    Tomko M, Winter S (2006) Identification of the initial entity in granular route directions. In: Riedl A, Kainz W, Elmes GA (eds) Progress in spatial data handling. 12th International symposium on spatial data handling. Springer, Berlin, pp 43–60Google Scholar
  54. 54.
    Tomko M, Winter S (2006) Recursive construction of granular route directions. J Spatial Sci 51(1):101–115Google Scholar
  55. 55.
    Tversky B, Lee PU (1998) How space structures language. In: Freksa C, Habel C, Wender KF (eds) Spatial cognition. Springer, Berlin, pp 157–175CrossRefGoogle Scholar
  56. 56.
    Tversky B, Lee PU (1999) Pictorial and verbal tools for conveying routes. In: Freksa C, Mark DM (eds) Spatial information theory. Springer, Berlin, pp 51–64Google Scholar
  57. 57.
    Wunderlich D, Reinelt R (1982) How to get there from here. In: Jarvella RJ, Klein W (eds) Speech, place, and action: studies and related topics. Wiley, Chichester, UK, pp 183–201Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alexander Klippel
    • 1
    Email author
  • Stefan Hansen
    • 2
    • 3
  • Kai-Florian Richter
    • 4
  • Stephan Winter
    • 5
  1. 1.Department of Geography, GeoVISTA CenterPenn StateState CollegeUSA
  2. 2.CRC Spatial InformationThe University of MelbourneMelbourneAustralia
  3. 3.LISAsoftPyrmontAustralia
  4. 4.Transregional Collaborative Research Center SFB/TR 8 Spatial CognitionUniversität BremenBremenGermany
  5. 5.Department of GeomaticsThe University of MelbourneMelbourneAustralia

Personalised recommendations