, Volume 13, Issue 2, pp 183–202 | Cite as

Yet Another Map Algebra

  • João Pedro Cerveira CordeiroEmail author
  • Gilberto Câmara
  • Ubirajara Moura de Freitas
  • Felipe Almeida


This paper describes features of a language approach for map algebra based on the use of algebraic expressions that satisfy a concise formalism. To be consistent with formal approaches such as geoalgebra and image algebra, the proposed algebraic expressions are suitable not only for the usual modeling of layers but also to describe variable neighborhoods and zones. As a compromise between language and implementation issues we present an implementation strategy based on the theory of automata. The result is an efficient way of implementing map algebra that simplifies its use on environmental and dynamic models without going too far from its well-known paradigm.


map algebra cartographic modeling spatial analysis formal languages automata dynamic modeling 


  1. 1.
    J.K. Berry. “Fundamental operations in computer-assisted map analysis,” International Journal of Geographic Information Systems, Vol. 2:119–136, 1987.CrossRefGoogle Scholar
  2. 2.
    G. Camara, U.M. Freitas, and J.P. Cordeiro. Towards an Algebra of Geographical Fields. Campinas, SP: SIBGRAPI, 1994.Google Scholar
  3. 3.
    G. Camara, R.C. Souza, U.M. Freitas, and J.C. Garido. “SPRING: integrating remote sensing and gis with object-oriented data modeling,” Computers and Graphics, 15–16, 1994.Google Scholar
  4. 4.
    H. Couclelis. “From cellular automata to urban models: new principles for model development and implementation,” Environment and Planning: Planning & Design, Vol. 24:165–174, 1997.CrossRefGoogle Scholar
  5. 5.
    H. Couclelis. “Chapter 2: Modeling frameworks, paradigms, and approaches,” in K.C. Clarke, B.E. Parks and M.P. Crane (Eds.), Geographical Information Systems and Environmental Modeling. New York: Longman & Co., 2000.Google Scholar
  6. 6.
    K.K.L. Chan and D. White. Map Algebra: An Object Oriented Implementation. Proceedings, International Geographic Information Systems (IGIS) Symposium: The Research Agenda. Arlington, Virginia, November 1987.Google Scholar
  7. 7.
    C. Dorenbeck and M.F. Egenhofer. Algebraic Optimization of Combined Overlay Operations. Auto-Carto 10: Technical Papers of the 1991 ACSM-ASPRS Annual Convention. Baltimore: ACSM-ASPRS, 6, 296–312, 1991.Google Scholar
  8. 8.
    M. Gardner. “Mathematical games: The fantastic combinations of John Conway’s new solitaire game ‘life’,” Scientific American, Vol. 223:120–123, 1970.CrossRefGoogle Scholar
  9. 9.
    J.E. Hopcroft and J.D. Ullman. Formal Languages and Their Relation to Automata. Reading, MA: Adisson-Wesley, 1969.Google Scholar
  10. 10.
    J. Mennis, R. Viger, C.D. Tomlin.“Cubic map algebra functions for spatio-temporal analysis,” Cartography and Geographic Information Systems, Vol. 30–1:17–30, 2005.CrossRefGoogle Scholar
  11. 11.
    D. Pullar. “MapScript: A map algebra programming language incorporating neighborhood analisys,” GeoInformatica, Vol. 5–2:145–163, 2001.CrossRefGoogle Scholar
  12. 12.
    D. Pullar. “A modeling framework incorporating a map algebra programming language,” in A.E. Rizzoli and A.J. Jakeman (Eds.), Proceedings, Biennial Meeting of the International Environmental Modeling and Software Society. Arlington, Virginia, 2002, November.Google Scholar
  13. 13.
    G.X. Ritter, J. Wilson, J. Davidson. “Image algebra an overview,” Computer Vision, Graphics and Image Processing, Vol. 49:297–331, 1990.CrossRefGoogle Scholar
  14. 14.
    M. Takeyama. Geoalgebra: A mathematical approach to integrating spatial modeling and GIS. PhD dissertation, Department of Geography, University of California at Santa Barbara, 1996.Google Scholar
  15. 15.
    M. Takeyama. “Building spatial models within GIS through geoalgebra,” Transactions in GIS, Vol. 2:245–256, 1997.CrossRefGoogle Scholar
  16. 16.
    M. Takeyama and H. Couclelis. “Map dynamics: integrating cellular automata and GIS through Geoalgebra,” International Journal of Geographical Information Science, Vol. 11:73–91, 1997.CrossRefGoogle Scholar
  17. 17.
    D. Tomlin. Geographic Information Systems and Cartographic Modeling. Englewood Cliffs, NJ: Prentice Hall, 1990.Google Scholar
  18. 18.
    H.H. Wagner and M.J. Fortin. “Spatial analysis of landscape: Concepts and statistics,” Ecology, Vol. 86–8:1975–1987, 2005.CrossRefGoogle Scholar
  19. 19.
    C.G. Wesseling, D.J. Karssenberg, P.A. Burrough, and W.P.A. Van Deursen. “Integrated dynamic environmental models in GIS: The development of a dynamic modelling language,” Transactions in GIS, Vol. 1:40–48, 1996.CrossRefGoogle Scholar
  20. 20.
    R. White and G. Engelen. “Cellular dynamics and GIS: modeling spatial complexity,” Geographical Systems, Vol. 1:237–253, 1994.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • João Pedro Cerveira Cordeiro
    • 1
    Email author
  • Gilberto Câmara
    • 1
  • Ubirajara Moura de Freitas
    • 2
  • Felipe Almeida
    • 3
  1. 1.Divisão de Processamento de ImagensInstituto Nacional de Pesquisas Espaciais (DPI–INPE)São José dos CamposBrazil
  2. 2.Departamento de GeoprocessamentoFundação para Ciência, Technologia e Aplicações Espaciais (FUNCATE)São José dos CamposBrazil
  3. 3.Instituto Tecnológico da AeronáuticaCentro Técnico Aeroespacial (ITA–CTA)São José dos CamposBrazil

Personalised recommendations