, Volume 10, Issue 4, pp 531–550 | Cite as

Specifying and Implementing Constraints in GIS—with Examples from a Geo-Virtual Reality System

  • Jildou Louwsma
  • Sisi Zlatanova
  • Ron van LammerenEmail author
  • Peter van Oosterom


Constraints are important elements of every modelling process, but until now they have been treated in an ad hoc manner, depending on the specific application domain and the capabilities of the tools used. In GIS and GeoVR applications, constraints are conditions which always have to be valid (true) within the model populated with real geographic object instances. This paper argues that constraints should form a systematic part of the object class definition, similar to other aspects of the definition, viz. attributes, methods and relationships. Also, the implementation of constraints in all GIS and GeoVR subsystems (at front-end, database and exchange (I/O) level) should be derived automatically from the constraints specified by the framework. The paper therefore puts forward a framework for modelling constraints comprising (1) a classification and clarification of constraints, (2) a formal description using the unified modelling language/object constraint language (UML/OCL) and (3) implementation characteristics. The components of the framework are illustrated and applied to SALIX-2, a geo-virtual reality (GeoVR) landscape modelling system.


object constraints object constraint language unified modelling language virtual reality GIS GeoVR 3D objects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bloemmen, A. Ligtenberg, R. van Lammeren, T. Hoogerwerf. “Approaches for the use of geo-visualisation in participatory planning processes—version 7.” PSPE project publication, Wageningen University, 2005, p. 26.Google Scholar
  2. 2.
    L.L. Boyd. “CDM RuleFrame—the business rule implementation framework that saves you work”. Oracle Corporation, iDevelopment Center of Excellence, ODTUG Business Rules Symposium, 2001.Google Scholar
  3. 3.
    E. Clementini, P. Di Felice, and P. van Oosterom. “A small set of formal topological relationships suitable for end-user interaction,” in SSD’93 (Ed.), Third International Symposium on Large Spatial Databases, Singapore, LNCS No. 692, Springer: Berlin Heidelberg New York, 277–295, 1993.Google Scholar
  4. 4.
    S. Cockcroft. “A taxonomy of spatial data integrity constraints,” GeoInformatica, Vol. 1(4):327–343, 1997.CrossRefGoogle Scholar
  5. 5.
    S. Cockcroft. “The design and implementation of a repository for the management of spatial data integrity constraints,” GeoInformatica, Vol. 8(1):49–69, 2004.CrossRefGoogle Scholar
  6. 6.
    F.C. Collins and J.L. Smith. “Taxonomy for error in GIS,” in R.G. Congalton (Ed.), Proceedings of the International symposium on spatial accuracy in natural resource data bases, “Unlocking the Puzzle,” American Society for Photogrammetry and Remote Sensing, Williamsburg, VA, pp. 1–7, 1994.Google Scholar
  7. 7.
    C.J. Date and Hugh Darwen. A Guide to the SQL Standard. 4th edition, Chapter 14, Addison-Wesley, 1997, pp. 197–218.Google Scholar
  8. 8.
    M.J. Egenhofer. “A formal definition of binary topological relationships”. In Proceedings of the 3rd International Conference on Foundation of Data Organisation and Algorithms, pp. 457–472, Paris, 1989.Google Scholar
  9. 9.
    ESRI. “Working with the geodatabase: powerful multi-user editing and sophisticated data integrity”. ESRI white paper, February 2002.Google Scholar
  10. 10.
    M. Heim. Virtual Realism. Oxford University Press: New York, 1998.Google Scholar
  11. 11.
    G.J. Hunter. “Management issues in GIS: Accuracy and Data Quality,” in G.J. Hunter (Ed.), Proceedings: Conference on Managing Geographic Information Systems for Success, pp. 95–101, Aurisa: Melbourne, Australia, 1996.Google Scholar
  12. 12.
    Y-M. Kwon, E. Ferrari, and E. Bertino. “Modelling spatio-temporal constraints for multimedia objects,” Data & Knowledge Engineering, Vol. 30:217–238, 1999.CrossRefGoogle Scholar
  13. 13.
    R. van Lammeren et al. “Virtual Reality in the landscape design process,” in D. Ogrin, I. Marusic, and T. Simanic (EDs.), Landscape Planning in the Era of Globalisation, - [S.l.]: [s.n.], pp. 158–165, 2002.Google Scholar
  14. 14.
    Laser-Scan Technical Product Description—Topology Users Guide. Cambridge, UK, 2003.Google Scholar
  15. 15.
    J.H. Louwsma. “Constraints in geo-information models. Applied to geo-VR in landscape architecture”. MSc thesis in Geodetic Engineering, Delft University of Technology, 2004.Google Scholar
  16. 16.
    S. Muller. “CDM RuleFrame Overview: 6 reasons to get framed!” Oracle Corporation, iDevelopment Center of Excellence, 2002.Google Scholar
  17. 17.
    OGC, Open GIS Consortium, Inc., “OpenGIS Simple Features Specification For SQL, Revision 1.1.” OpenGIS Project Document 99-049, 1999.Google Scholar
  18. 18.
    OMG, Object Management Group. “Unified Modeling Language Specification (Action Semantics), UML 1.4 with action semantics,” January 2002.Google Scholar
  19. 19.
    Oracle. “Oracle 9i JDBC Developer’s Guide and Reference, release 2 (9.2),” Part No. A96654-01, March 2002. Chapter 3—Basic Features, Chapter 7—Accessing and Manipulating Oracle Data.Google Scholar
  20. 20.
    Oracle, “Oracle Spatial Topology and Network Data Models, 10g Release 1 (10.1),” 2003.Google Scholar
  21. 21.
    D. Papadias and Y. Theodoridis. “Spatial relations, minimum bounding rectangles and spatial data structures,” International Journal of GIS, Vol. 11(2):111–138, 1997.Google Scholar
  22. 22.
    D.J. Peuquet. “It’s about time: a conceptual framework for the representation of temporal dynamics in GIS,” in W. Kuhn and P. Haunold (Eds.), Temporal Data in Geographic Information Systems, pp. 149–170, 1995.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Jildou Louwsma
    • 1
  • Sisi Zlatanova
    • 2
  • Ron van Lammeren
    • 3
    Email author
  • Peter van Oosterom
    • 2
  1. 1.Waterschap Roer en OvermaasSittardThe Netherlands
  2. 2.GIS Technology Research GroupDelft University of TechnologyDelftThe Netherlands
  3. 3.Centre for Geo-InformationWageningen UniversityWageningenThe Netherlands

Personalised recommendations