Advertisement

GeoInformatica

, Volume 10, Issue 4, pp 447–468 | Cite as

The Radial Topology Algorithm—A New Approach for Deriving 2.5D GIS Data Models

  • Ulrich LenkEmail author
  • Christian Heipke
Article

Abstract

In this paper a new method for the combination of 2D GIS vector data and 2.5D DTM represented by triangulated irregular networks (TIN) to derive integrated triangular 2.5D object-based landscape models (also known as 2.5D-GIS-TIN) is presented. The algorithm takes into account special geometric constellations and fully exploits existing topologies of both input data sets, it “sews the 2D data into the TIN like a sewing-machine” while traversing the latter along the 2D data. The new algorithm is called radial topology algorithm. We discuss its advantages and limitations, and describe ways to eliminate redundant nodes generated during the integration process. With the help of four examples from practical work we show that it is feasible to compute and work with such integrated data sets. We also discuss the integrated data models in the light of various general requirements and conclude that the integration based on triangulations has a number of distinct advantages.

Keywords

multi-dimensional data modelling triangulations DEM/DTM algorithms performance GIS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abdelguerfi, E. Cooper, C. Wynne, and K. Shaw. “An Extended Vector Product Format (EVPF) suitable for the representation of three-dimensional elevation in terrain databases,” International Journal of Geographical Information Science, Vol. 11:649–676, 1997.CrossRefGoogle Scholar
  2. 2.
    M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry—Algorithms and Applications. Springer: Berlin Heidelberg New York, 1997.Google Scholar
  3. 3.
    M. Bern and D. Eppstein. “Mesh generation and optimal triangulation,” in D.Z. Du and F.K. Hwang (Eds.), Computing in Euclidean Geometry (2nd Edition), Lecture Notes Series on Computing, Vol. 4, pp. 47–123, World Scientific: Singapore, 1995.Google Scholar
  4. 4.
    G. Booch, J. Rumbaugh, and I. Jacobsen. Unified Modelling Language User Guide. Addison-Wesley: Reading, Massachusetts, 1998.Google Scholar
  5. 5.
    M. Breunig. “On the way to component-based 3D/4D geoinformation systems,” in Lecture Notes in Earth Sciences 94, Springer: Berlin Heidelberg New York, 2000.Google Scholar
  6. 6.
    M. Breunig. “Integration of spatial information for geo-information systems,” in Lecture Notes in Earth Sciences 61, Springer: Berlin Heidelberg New York, 1996.Google Scholar
  7. 7.
    G. Buziek. “Considerations on integration of DTM in GIS,” in Proc. of Eurocarto XI, pp. 165–176, Kiruna, Sweden, 1993.Google Scholar
  8. 8.
    G. Buziek, D. Grünreich, and I. Kruse. “Stand und Entwicklung der digitalen Landschaftsmodellierung mit dem Topographischen Auswertesystem der Universität Hannover (TASH),” Vermessung, Photogrammetrie, Kulturtechnik, Vol. 90:84–88, 1992.Google Scholar
  9. 9.
    B. de Cambray. “Three-dimensional (3D) objects in geographical databases,” in Proc. 4th European Conference and Exhibition on Geographical Information Systems (EGIS’93), Genova, Italy, 29.03.-01.04, pp. 217–226, 1993.Google Scholar
  10. 10.
    J. Chen, M. Sun, and Q. Zhou. “Expression and visualization of cloverleaf junction in a 3-dimensional city model,” GeoInformatica, Vol. 4:375–386, 2000.CrossRefGoogle Scholar
  11. 11.
    P.A. Devijver and M. Dekesel. “Insert and delete algorithms for maintaining dynamic Delaunay triangulations,” Pattern Recognition Letters, Vol. 1:73–77, 1982.CrossRefGoogle Scholar
  12. 12.
    O. Devillers, S. Pion, and M. Teilland. “Walking in a triangulation,” in Institut National de Recherche en Informatique et en Automatique (INRIA), Sophia Antipolis, Rapport de recherche no 4120, 2001.Google Scholar
  13. 13.
    D.H. Douglas and T.K. Peucker. “Algorithms for the reduction of the number of points required to represent a line or its caricature,” Canadian Cartographer, Vol. 10:112–122, 1973.Google Scholar
  14. 14.
    H. Ebner and D. Fritsch. “High fidelity digital terrain models elements of land information systems,” FIG Congress, XVIII, Toronto, Canada, Invited Paper No. 504.1, 15, 1986.Google Scholar
  15. 15.
    M.J. Egenhofer, A.U. Frank, and J.P. Jackson. “A topological data model for spatial databases,” in Proc. First Symposium SSD’89, Santa Barbara, California, USA, pp. 271–286, 1989.Google Scholar
  16. 16.
    D. Fritsch. “Three-dimensional geographic information systems—status and prospects,” in International Archives of Photogrammetry and Remote Sensing, Vol. XXXI, Part B3, Vienna, Austria, pp. 215–221, 1996.Google Scholar
  17. 17.
    M.F. Goodchild. “What next? reflections from the middle of the growth curve,” in T.W. Foresman (Ed.), The History of Geographic Information Systems: Perspectives from the Pioneers, pp. 369–381, Prentice-Hall: Upper Saddle River, New Jersey, 1997.Google Scholar
  18. 18.
    G. Gröger. Modellierung Raumbezogener Objekte und Datenintegrität in GIS. Herbert Wichmann Verlag: Heidelberg, 2000.Google Scholar
  19. 19.
    L. Guibas and J. Stolfi. “Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams,” ACM Transactions on Graphics, Vol. 4:74–123, 1985.CrossRefGoogle Scholar
  20. 20.
    M. Heller. “Triangulation algorithms for adaptive terrain modelling,” in Proc. 4th Int. Symp. on Spatial Data Handling, Zürich, Vol. 1, pp. 163–174, 1990.Google Scholar
  21. 21.
    F. Klötzer. “Integration von triangulierten digitalen Geländemodellen und Landkarten,” Diploma thesis, Institute of Computer Science III, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, 1997.Google Scholar
  22. 22.
    A. Koch and C. Heipke. “Semantically correct 2.5 D GIS data—the integration of a DTM and topographic vector data,” in P. Fisher P. (Ed.), Developments in Spatial Data Handling, 11th Symposium on Spatial Data Handling, pp. 509–526, Springer: Berlin Heidelberg New York, 2004.Google Scholar
  23. 23.
    M. van Kreveld. “Digital elevation models and TIN algorithms,” in M. van Kreveld, J. Nievergelt, Th. Roos and P. Widmayer (Eds.), Algorithmic Foundations of Geographic Information Systems. Lecture Notes in Computer Science 1340, pp. 37–78, Springer: Berlin Heidelberg New York, 1997.Google Scholar
  24. 24.
    U. Lenk. “2.5D-GIS und Geobasisdaten—Integration von Höheninformation und Digitalen Situationsmodellen,” Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover Nr. 244 and Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe C, Nr. 546. Doctoral thesis, University of Hannover, Germany, 2001.Google Scholar
  25. 25.
    U. Lenk and I. Kruse. “Multibeam data processing: data reduction, adaptive triangular meshing and comments resulting from Brouns et al. (THJ No. 101, 2001),” Hydrographic Journal, Vol. 102:9–14, 2001.Google Scholar
  26. 26.
    P.A. Longley, M.I. Goodchild, D.J. Maguire, and D.W. Rhind (Eds.). Geographical information systems, Vol. 1., Principles and Technical Issues. Wiley: New York, 1999.Google Scholar
  27. 27.
    A. de la Losa. “Towards a 3D GIS,” in Proc. GISPlanet’98 (CD-ROM), Lisboa, Portugal, 1998.Google Scholar
  28. 28.
    J. O’Rourke. Computational Geometry in C. 2nd Edition, Cambridge University Press: Massachusetts, 1998.Google Scholar
  29. 29.
    T.K. Peucker, R.J. Fowler, J.J. Little, and D.M. Mark. “Digital representation of three-dimensional surfaces by Triangulated Irregular Networks (TIN) (Revised),” Simon Fraser University, Burnaby, British Columbia, Canada and Office of Naval Research, Geography Programs, Arlington, Virginia, USA, Technical Report No. 10, 1976.Google Scholar
  30. 30.
    M. Pilouk. “Integrated modelling for 3D GIS,” Ph.D. Thesis, ITC Publication Series No. 40, Enschede, The Netherlands, 1996.Google Scholar
  31. 31.
    L. Plumer and G. Gröger. “Achieving integrity in geographic information systems—maps and nested maps,” GeoInformatica, Vol. 1:345–367, 1997.CrossRefGoogle Scholar
  32. 32.
    M.F. Polis, S.J. Gifford, and D.M. McKeown Jr. “Automating the construction of large-scale virtual worlds,” IEEE Computer, Vol. 28:57–65, 1995.Google Scholar
  33. 33.
    U. Ramer. “An iterative procedure for the polygonal approximation of plane curves,” Computer Graphics and Image Processing, Vol. 1:244–256, 1972.Google Scholar
  34. 34.
    J.R. Shewchuk. “Delaunay refinement mesh generation.” Ph.D. Thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, 1997.Google Scholar
  35. 35.
    R. Weibel. “Generalization of spatial data: principles and selected algorithms,” in M. van Kreveld, J. Nievergelt, Th Roos and P. Widmayer (Eds.), Algorithmic Foundations of Geographic Information Systems. Lecture Notes in Computer Science 1340, pp. 99–152, Springer: Berlin Heideberg New York, 1997.Google Scholar
  36. 36.
    M.F. Worboys. GIS—A Computing Perspective. Taylor and Francis: London, 1995.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.EADS Deutschland GmbH, Dept. MSIC21FriedrichshafenGermany
  2. 2.Institute for Photogrammetry and GeoInformationUniversity of HannoverHannoverGermany

Personalised recommendations