Skip to main content
Log in

Controlled Line Smoothing by Snakes

  • Original Paper
  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

A major focus of research in recent years has been the development of algorithms for automated line smoothing. However, combination of the algorithms with other generalization operators is a challenging problem. In this research a key aim was to extend a snakes optimization approach, allowing displacement of lines, to also be used for line smoothing. Furthermore, automated selection of control parameters is important for fully automated solutions. An existing approach based on line segmentation was used to control the selection of smoothing parameters dependent on object characteristics. Additionally a new typification routine is presented, which uses the same preprocessed analysis for the segmentation of lines to find suitable candidates from curve bends. The typification is realized by deleting undersized bends and emphasizing the remaining curve bends. The main results of this research are two new algorithms for line generalization, where the importance of the line smoothing algorithm lies in the usage of a optimization approach which can also be used for line displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. J. Badaud, A.P. Witkin, and R.O. Duda. “Uniqueness of the Gaussian Kernel for scale-space filtering,” IEEE Transactions on Pattern Analysis and Image Processing, Vol. 8(1):183–193, 1986.

    Google Scholar 

  2. M. Bader. Energy Minimization Methods for Feature Displacement in Map Generalization. Ph.D. thesis, Department of Geography, University of Zurich, 2001.

  3. J. Balboa and F. Lopez. “Frequency filtering of linear features by means of wavelets: A method and an example,” Cartographic Journal, Vol. 37(1):39–49, 2000.

    Google Scholar 

  4. M. Barrault, M. Bader and R. Weibel. Topology Preserving Conflict Removal between Symbolized Roads in Cartographic Generalization: Extending Snakes Methods. in Abstract for GIScience2000, 2000.

  5. J. Bobrich. Ein neuer Ansatz zur kartographischen Verdrängung auf der Grundlage eines mechanischen Federmodells. Ph.D. thesis, Deutsche Geodätische Kommission, München Reihe C, H. 455, 1996.

  6. D. Burghardt. Automatisierung der kartographischen Verdrängung mittels Energieminimierung. Ph.D. thesis, Deutsche Geodätische Kommission, München Reihe C, H. 536, 2000.

  7. D. Burghardt and S. Meier. “Cartographic displacement using the snakes concept,” in W. Foerstner and L. Pluemer (Eds.), Semantic Modeling for the Acquisition of Topografic Information from Images and Maps, Birkhaeuser-Verlag: Basel, 1997.

    Google Scholar 

  8. K.C. Clarke, P. Cippoletti and G. Olsen. “Empirical comparison of two line enhancement methods,” Proceedings of AUTO-CARTO 11, 1993.

  9. C. Duchêne. “Road generalisation using agents,” Proceedings of the GIS Research UK, 9th Annual Conference, University of Glamorgan Wales, pp. 325–328, 2001.

  10. E. Fritsch. “Utilisation de la coubure pour la généralisation du linéaire routier,” Bulletin d’Information n.66, IGN, France, 1997.

  11. E. Fritsch and J.P. Lagrange. “Spectral representation of linear features for generalisation,” Proceedings of COSIT’95, pp. 157–171, Austria, Springer Verlag, 1995.

  12. L. Harrie. An Optimisation Approach to Cartographic Generalisation. Ph.D. thesis, Department of Technology and Society, Lund University, 2001.

  13. L. Harrie and T. Sarjakoski. “Generalisation of vector data sets by simultaneous least squares adjustment,” International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part A4, Amsterdam, pp. 340–347, 2000.

  14. P. Højholt. “Solving local and global space conflicts in map generalization using a finite element method adapted from structural mechanics,” in Proceedings 8th International Symposium on Spatial Data Handling, pp. 679–689. Vancouver, Canada, 1998.

  15. M. Kass, A. Witkin and D. Terzopoulos. “Snakes: Active contour models,” in Proceedings of the First International Conference on Computer Vision, pp. 259–268, 1987.

  16. R.B. McMaster. “The integration of simplification and smoothing algorithms in line generalization,” Cartographica, Vol. 26:100–121, 1989.

    Google Scholar 

  17. R.B. McMaster and K.S. Shea. “Generalization in Digital Cartography,” (Resource Publications in Geography). Washington, D.C.: Association of American Geographers, 1992.

  18. S. Meier. “Zur qualität snakes-approximierter höhenprofile mit diskontinuitäten,” Photogrammetrie Fernerkundung Geoinformation, Vol. 6:399–409, 2000.

    Google Scholar 

  19. B. Nakos and V. Miropoulos. “Local length ratio as a measure of critical points detection for line simplification,” Fifth Workshop on Progress in Automated Map Generalization, Paris, France, 2003.

  20. Perkal. “An Attempt at Objective Generalization,” in: Michigan Inter-University Community of Mathematical Geographers, Discussion Paper 10, University of Michigan, 1966.

  21. C. Plazanet. Enrichissement des bases données géeographiques: analyse dela géometrie des objets linéaires pour la généralisation cartographique (application aux routes). Ph.D. thesis of Marne la Vallée University, 1996.

  22. C. Plazanet, N.M. Bigolin and A. Ruas. “Experiments with Learning Techniques for Spatial Model Enrichment and Line Generalization,” GeoInformatica, Vol. 2(4):315–333, 1998.

    Article  Google Scholar 

  23. A. Ruas. “The role of meso objects for generalisation,” Proceedings of the International Symposium on Spatial Data Handling, Beijing, 3b.50, 2000.

  24. E. Saux. “B-spline Functions and Wavelets for Cartographic Line Generalization,” Cartography and Geographic Information Science. Vol. 30(1):33–50, 2003.

    Article  Google Scholar 

  25. F. Schwarzbach. “Untersuchungen zur rechnergestützten Linienglättung,” Ph.D. thesis, Kartographische Bausteine 10, Department of Cartography, University of Dresden, 1995.

  26. G. Schweinfurth. Höhenliniengeneralisierung mit Methoden der digitalen Bildverarbeitung. Deutsche Geodätische Kommission, Reihe C, No. 291, 1984.

  27. M. Sester. “Generalization based on least squares adjustment,” International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B4, Amsterdam, pp. 931–938, 2000.

  28. S. Steiniger and S. Meier. “Snakes: A technique for line smoothing and displacement in map generalisation,” Sixth Workshop on Progress in Automated Map Generalization, Leicester, UK, 2004.

  29. F. Töpfer. Kartographische Generalisierung, Ergänzungsheft Nr. 276 zu Geographische Mitteilungen. VEB Hermann Haack, Geographisch-Kartographische Anstalt Gotha/Leipzig, 1974.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Burghardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burghardt, D. Controlled Line Smoothing by Snakes. Geoinformatica 9, 237–252 (2005). https://doi.org/10.1007/s10707-005-1283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-005-1283-3

Keywords

Navigation