Skip to main content
Log in

Ultrasonic Analysis of Artificial Cementation Effects on Tropical Clay Soils

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Soil–cement mixtures have practical applications in geotechnical engineering. Peculiarities associated with the stiffness and strength gains over the curing time provided by cementation need to be investigated, especially for tropical soils. Few studies investigated mixtures of tropical soils and high early strength Portland cement, in order to understand the changes in physical and mechanical properties associated with mineralogical and microstructural alterations caused by artificial cementation. This work aimed to study the effects of cementation on a tropical clay soil using ultrasonic method and to correlate the results with those of other tests. The ultrasonic pulse velocity (UPV) was evaluated for the natural soil and mixtures of soil with different cement contents (1%, 2%, 3%, 5%, 7%), after different curing times, based on propagation of longitudinal ultrasonic waves. Mineralogical and microstructural analyses, geotechnical characterization, resilient modulus (RM) and unconfined compressive strength (UCS) tests, and physical–chemical investigation through volumetric variation were also developed. The ultrasonic response revealed direct effects of cementation on micromorphology, plasticity and granulometry. A microstructure with larger pores was transformed into a dense structure with particles bonded by cementitious compounds. This change provided new paths for the propagation of ultrasonic waves (UPV increases exceeded fourfold for a cement content of 7%) and greater mechanical resistance to the application of cyclic and static loads. Nearly linear increases in UPV, UCS and RM were observed with the addition of cement. A good linear relationship was observed between the values of UPV and RM (R2 > 0.8968) or UCS (R2 > 0.8925).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • AASHTO T 307-99 (2017) Standard method of test for determining the resilient modulus of soils and aggregate materials.

  • Achampong F, Usmen M, Kagawa T (1997) Evaluation of resilient modulus for lime and cement-stabilized synthetic cohesive soils. Transportation Research Record 1589, TRB, 971077, 70–75, Wayne State University, Detroit, Michigan

  • Adem HH, Vanapalli SK (2015) Prediction of the modulus of elasticity of compacted unsaturated expansive soils. Int J Geotech Eng 9(2):163–175. https://doi.org/10.1179/1939787914Y.0000000050

    Article  Google Scholar 

  • Alkiki IM, Abdulnafaa MD, Aldaood A (2021) Geotechnical and other characteristics of cement-treated low plasticity clay. Soils Rocks 44(1):1–10. https://doi.org/10.28927/SR.2021.053120

    Article  Google Scholar 

  • Al-Rawas AA, Hago AW, Al-Sarmi H (2005) Effect of lime, cement and sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Build Environ 40(5):681–687. https://doi.org/10.1016/j.buildenv.2004.08.028

    Article  Google Scholar 

  • Arman H, Paramban S (2021) Dimensional effects on dynamic properties and the relationships between ultrasonic pulse velocity and physical properties of rock under various environmental conditions. Geotech Geol Eng 39:3947–3957. https://doi.org/10.1007/s10706-021-01738-7

    Article  Google Scholar 

  • Arshad M (2019) Development of a correlation between the Resilient Modulus and CBR value for granular blends containing natural aggregates and RAP/RCA materials. Adv Mater Sci Eng 1:1–16. https://doi.org/10.1155/2019/8238904

    Article  CAS  Google Scholar 

  • Associação Brasileira de Normas Técnicas (2012) NBR 12025 – MB 3361. Solo-cimento – Ensaio de compressão simples de corpos-de-prova cilíndricos (Soil cement – Simple Compression test). Rio de Janeiro, Brazil

  • ASTM D1633-00 (2017) Standard test method for compressive strength of molded soil–cement cylinders. Annual book of ASTM Standards, West Conshohocken, PA

  • ASTM D2487-17 (2017) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). Annual book of ASTM Standards, West Conshohocken, PA

  • ASTM D4318-17e1 (2017) Standard test methos for liquid limit, plastic limit, and plasticity index of soils. Annual book of ASTM Standards, West Conshohocken, PA

  • ASTM D698-12 (2021) Standard test methods for laboratory compaction characteristics of soil using standard effort. Annual book of ASTM Standards, West Conshohocken, PA

  • ASTM D7928-21e1 (2021) Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. Annual book of ASTM Standards, West Conshohocken, PA

  • ASTM D854-14 (2014) Standard test method for specific gravity of soil solids by water pycnometer. Annual book of ASTM Standards, West Conshohocken, PA

  • Aversa S, Evangelista A, Leroueil S, Picarelli, A (1993) Some aspects of the mechanical behaviour of structured soils and soft rocks. In: International symposium on geotechnical engineering of hard soils–soft rocks. Athens

  • Baghbani A, Abuel-Naga H, Faradonbeh RS, Costa S, Almasoudi R (2023) Ultrasonic characterization of compacted salty kaolin-sand mixtures under nearly zero vertical stress using experimental study and machine learning. Geotech Geol Eng 41:2987–3012. https://doi.org/10.1007/s10706-023-02441-5

    Article  Google Scholar 

  • Basso RV, Ferraz RL, Belincanta A, Ramos, FS (2003) Aplicação do método físico-químico de dosagem de misturas solo-cimento aos solos típicos no noroeste do Paraná. IV Encontro Tecnológico da Engenharia Civil e Arquitetura, ENTECA, Brazil

  • Bortolotto MS (2017) Bender Elements, Ultrasonic Pulse Velocity, and Local Gauges for the Analysis of Stiffness Degradation of an Artificially Cemented Soil. Dissertion, Federal University of Rio Grande do Sul

  • Bressan HFG (2019) Study of the behaviour of ultrasonic waves in monitoring concrete at early ages. Dissertion, Federal University of Santa Catarina

  • Caputo HP (2015) Mecânica dos Solos – Teoria e Aplicações (Soil Mechanics – Theory and Applications). LTC, Brazil

  • Carniel AJZ (2021) Evaluation of the sensitivity of diffuse ultrasound parameters in the characterization of concrete mixtures. Dissertion, Federal University of Santa Catarina

  • Chadda LR (1971) A rapid method of assessing the cement requirement for the stabilization of soils. Indian Conc J 45(7):298–314

    Google Scholar 

  • Champiré F, Fabbri A, Morel JC, Wong H, Mcgregor F (2016) Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Constr Build Mater 110:70–78. https://doi.org/10.1016/j.conbuildmat.2016.01.027

    Article  Google Scholar 

  • Chan CM, Ch’ng SS (2011) Preliminary study of S-Wave velocity and unconfined compressive strength of cement-palf stabilized kaolin. Int J Integr Eng (Issue of Civil and Environmental Engineering)

  • Chen J, Wang H, Yao Y (2016) Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction. Ultrasonics 69:19–24. https://doi.org/10.1016/j.ultras.2016.03.001

    Article  Google Scholar 

  • Chen Y, Uchimura T, Irfan M, Huang D, Xie J (2017) Detection of water infiltration and deformation of unsaturated soils by elastic wave velocity. Landslides 14(5):1715–1730. https://doi.org/10.1007/s10346-017-0825-8

    Article  Google Scholar 

  • Chenari RJ, Fatahi B, Ghorbani A, Alamoti MN (2018) Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash. Geomech Eng 14(6):533–544. https://doi.org/10.12989/gae.2018.14.6.533

    Article  Google Scholar 

  • Chew SH, Kamruzzaman AHM, Lee FH (2004) Physicochemical and Engineering behavior of cement treated clays. J Geotech Geoenviron Eng 130(7):696–706. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)

    Article  CAS  Google Scholar 

  • Chou, YT (1977) Soil stabilization. In: Engineering behavior of pavement materials: State of-the-art. s.1. Final Report Army Engineer Water-ways Experiment Station, Soils and Pavement Laboratory.

  • Christ M, Park JB (2009) Ultrasonic technique as tool for determining physical and mechanical properties of frozen soils. Cold Reg Sci Technol 58(3):136–142. https://doi.org/10.1016/j.coldregions.2009.05.008

    Article  Google Scholar 

  • Chrysochoou M (2014) Investigation of the mineral dissolution rate and strength development in stabilized soils using quantitative X-ray diffraction. J Mater Civ Eng 26(2):288–295. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000814

    Article  CAS  Google Scholar 

  • Consoli NC, Cruz RC, Fonseca AV, Coop MR (2012) Influence of cement-voids ratio on stress-dilatancy behavior of artificially cemented sand. J Geotech Geoenviron Eng 138(1):100–109. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000565

    Article  CAS  Google Scholar 

  • Consoli NC, Cruz RC, Floss MF, Festugato L (2010) Parameters controlling tensile and compressive strength of artificially cemented sand. J Geotech Geoenviron Eng 136(5):759–763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278

    Article  Google Scholar 

  • Consoli NC, Foppa D, Festugato L, Heineck KS (2007) Key parameters for strength control of artificially cemented soils. J Geotech Geoenviron Eng 133(2):419–436. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)

    Article  Google Scholar 

  • Croft JB (1967) The influence of soil mineralogical composition on cement estabilization. Geotechnique 17:119–135

    Article  CAS  Google Scholar 

  • Departamento Nacional de Estradas de Rodagem (1996) DNER CLA 259. Classificação de solos tropicais para finalidades rodoviárias utilizando corpos-de-prova compactados em equipamento miniatura (Classification of tropical soils for road purposes using compacted specimens in miniature equipment). Rio de Janeiro, Brazil

  • Departamento Nacional de Infraestrutura de Transporte (2006) Manual de Pavimentação (Paving Manual). Rio de Janeiro, Brazil

  • Departamento Nacional de Infraestrutura de Transporte (2018) DNIT ME 134. Pavimentação – Solos – Determinação do módulo de resiliência (Paving - Soils - Determination of the resilient modulus). Rio de Janeiro, Brazil

  • Departamento Nacional de Infraestrutura de Transporte (2019) DNIT ME 414. Pavimentação – Solo-Cimento – Dosagem físico-química de solo-cimento (Paving - Soil-Cement - Physical and chemical dosage of soil-cement). Rio de Janeiro, Brazil

  • Departamento Nacional de Infraestrutura de Transporte (2021) DNIT IS 247. Instrução de Serviço – Estudos para elaboração de projetos de implantação usando o Método de Dimensionamento Nacional – MeDiNa (Service Instruction - Studies for the elaboration of implementation projects using the National Dimensioning Method – MeDiNa). Brazil

  • Dongqing LI, Xing H, Feng M, Yu Z (2016) The impact of unfrozen water content on ultrasonic wave velocity in frozen soils. Proc Eng 143:1210–1217. https://doi.org/10.1016/j.proeng.2016.06.114

    Article  Google Scholar 

  • EMBRAPA – Empresa Brasileira de pesquisa Agropecuária (2017). Manual de métodos de análise de solo (Soil analysis methods manual). EMBRAPA, Brasília

  • Fatahi B, Fatahi B, Le TM, Khabbaz H (2013) Small-strain properties of soft clay treated with fibre and cement. Geosynth Int 20(4):286–300. https://doi.org/10.1680/gein.13.00018

    Article  Google Scholar 

  • Ferreira GC, Dos S, Sarro WS, Hoffmann M, Gonçalves R (2014) Influência das camadas de compactação em inspeções de painéis monolíticos de solo cimento por ultrassom (Influence of compaction layers on ultrasonic inspections of monolithic soil-cement panels). In: Proc. Congresso Nacional de Ensaios Não Destrutivos e Inspeção - ConaEnd2014 - available in CD-ROM., Abendi, São Paulo, Brazil

  • Ferreira JWS, Casagrande MDT, Teixeira RS (2022) Sample dimension effect on cement-stabilized sandy soil mechanical behavior. Soils Rocks 45(2):1–10. https://doi.org/10.28927/SR.2022.075321

    Article  Google Scholar 

  • Festugato L, Venson GI, Consoli NC (2021) Parameters controlling cyclic behaviour of cement-treated sand. Transp Geotech. https://doi.org/10.1016/j.trgeo.2020.100488

    Article  Google Scholar 

  • Filho JT, Tessier D (2009) Characterization of soil structure and porosity under long-term conventional tillage and no-tillage systems. Revista Brasileira de Ciência do Solo. https://doi.org/10.1590/S0100-06832009000600032

    Article  Google Scholar 

  • Gullu H, Agha AA (2021) The rheological, fresh and strength effects of cold-bonded geopolymer made with metakaolin and slag for grouting. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.122091

    Article  Google Scholar 

  • Gullu H, Yetim ME, Gullu EB (2023) Effect of using nano-silica on the rheological, fresh and strength characteristics of cement-based grout for grouting columns. J Build Mater. https://doi.org/10.1016/j.jobe.2023.107100

    Article  Google Scholar 

  • Horpibulsuk S (2012) Strength and microstructure of cement stabilized clay. Intech Open Book Series-Chapter 15. https://doi.org/10.5772/35225

  • Horpibulsuk S, Rachan R, Chinkulkijniwat A, Raksachon Y, Suddeepong A (2010) Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Constr Build Mater 24(10):2011–2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011

    Article  Google Scholar 

  • Horpibulsuk S, Rachan R, Raksachon Y (2009) Role of fly ash on strength and microstructure development in blended cement stabilized silty clay. Soil Found 49(1):85–98. https://doi.org/10.3208/sandf.49.85

    Article  Google Scholar 

  • Ikhlef NS, Ghembaza MS, Dadouch M (2014) Effect of cement and compaction on the physicochemical behavior of a material in the region of Sidi Bel Abbes. Eng Technol Appl Sci Res 40(4):677–680. https://doi.org/10.48084/etasr.467

    Article  Google Scholar 

  • Jing P, Song X, Zhang J, Nowamooz H (2022) A review of hydro-mechanical coupling behaviour of cement-treated materials. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.126446

    Article  Google Scholar 

  • Kolay E, Baser T (2014) Estimating of the dry unit weight of compacted soils using general linear model and multi-layer perceptron neural networks. Appl Soft Comput 18:223–231. https://doi.org/10.1016/j.asoc.2014.01.033

    Article  Google Scholar 

  • Krautkraemer J, Krautkraemer H (2013) Ultrasonic testing of materials. Springer, Berlin

    Google Scholar 

  • Kutanaei SS, Choobbasti AJ (2016) Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001761

    Article  Google Scholar 

  • Lofti H, Witczak MW (1985) Dynamic characterization of cement-treated base and subbase materials. Transportation Research Record 1031, TRB, 41–48, National Research Council, Washington, DC

  • Lopes MMS, Alvarenga RDCSSA, Pedroti LG, Ribeiro JCL, De Carvalho AF, Cardoso FDP, Mendes BC (2019) Influence of the incorporation of granite waste on the hiding power and abrasion resistance of soil pigment-based paints. Constr Build Mater 205:463–474. https://doi.org/10.1016/j.conbuildmat.2019.02.046

    Article  Google Scholar 

  • Luong J, Destain MF (2014) Mercatoris BCN (2014) Characterization of structural properties of soil using ultrasonic waves. Am Soc Agric Biol Eng Ann Int Meet ASABE 6:4582–4593

    Google Scholar 

  • Lyra BI, Monteiro ECB (2021) Combate à ação sinérgica da carbonatação e do ataque por cloretos com adição de CBCA (Combat the synergistic action of carbonation and attack by chloride with the addition of SCBA). Braz J Dev 7(10):98352–98373. https://doi.org/10.34117/bjdv7n10-245

    Article  Google Scholar 

  • Mandal T, Tinjum JM, Edil TB (2016) Non-destructive testing of cementitiously stabilized materials using ultrasonic pulse velocity test. Transp Geotech. https://doi.org/10.1016/j.trgeo.2015.09.003

    Article  Google Scholar 

  • Mengue E, Mroueh H, Lancelot L, Medjo ER (2017) Physicochemical and consolidation properties of compacted lateritic soil treated with cement. Soil Found 57(1):60–79. https://doi.org/10.1016/S0950-0618(00)00007-6

    Article  Google Scholar 

  • Meysan B (2021) Shear wave velocity in granular soil considering effects of inherent and stress-induced anisotropy. J Central S Univ 28:1476–1492. https://doi.org/10.1007/s11771-021-4711-0

    Article  Google Scholar 

  • Mitchell JK, El Jack SA (1966) The fabric of soil–cement and its formation. Clays Clay Miner 14(1):297–305. https://doi.org/10.1016/B978-0-08-011908-3.50028-1

    Article  CAS  Google Scholar 

  • Miturski M, Sas W, Radzevicius A, Sadzevicius R, Skominas R, Stelmaszczyk M, Gluchowski A (2021) Effect of dispersed reinforcement on ultrasonic pulse velocity in stabilized soil. Materials 14:6951. https://doi.org/10.3390/ma14226951

    Article  CAS  Google Scholar 

  • Nalon GH, Ribeiro JCL, Araújo END, Pedroti LG, Carvalho JMF, Santos RF, Oliveira DS (2021) Residual mechanical properties of mortars containing carbon nanomaterials exposed to high temperatures. Constr Build Mater 275:122–123. https://doi.org/10.1016/j.conbuildmat.2020.122123

    Article  CAS  Google Scholar 

  • Nelson JD, Miller DJ (1992) Expansive soils: problems and practice in foundation and pavement engineering. Wiley, New York

    Google Scholar 

  • Neto WRV, Carvalho CJ, Capuzzo VMS (2019) Investigação Experimental do pH em Interfaces Solo-Concreto. In: Geocentro 2019, Brasília, Brazil

  • Oh WT, Vanapalli SK (2016) Influence of Poisson’s ratio on the stress vs settlement behavior of shallow foundations in unsaturated fine-grained soils. Soils Rocks 39(1):71–79. https://doi.org/10.28927/SR.391071

    Article  Google Scholar 

  • Ouzia A, Scrivener K (2019) The needle model: a new model for the main hydration peak of alite. Cem Concr Res 115:339–360. https://doi.org/10.1016/j.cemconres.2018.08.005

    Article  CAS  Google Scholar 

  • Pakbaz MS, Alipour R (2012) Influence of cement addition on the geotechnical properties of an Iranian clay. Appl Clay Sci 67–68:1–4. https://doi.org/10.1016/j.clay.2012.07.006

    Article  CAS  Google Scholar 

  • Puppala AJ, Ramakrishna AM, Hoyos LR (2003) Resilient Moduli of treated clays from repeated load triaxial test. Transp Res Rec J Transp Res Board. https://doi.org/10.3141/1821-08

    Article  Google Scholar 

  • Rabab’ah S, Hattamleh OA, Aldeeky H, Aljarrah MM, AlQablan HA (2020) Resilient response and permanent strain of subgrade soil stabilized with byproduct recycled steel and cementitious materials. J Mater Civ Eng 32(6):1–10. https://doi.org/10.1061/(asce)mt.1943-5533.0003211

    Article  Google Scholar 

  • Ranaivomanana H, Razakamanantsoa A, Amiri O (2018) Effects of cement treatment on microstructural, hydraulic, and mechanical properties of compacted soils: characterization and modeling. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001248

    Article  Google Scholar 

  • Sahlabadi SH, Meysam B, Mousivand M, Saadat M (2021) Freeze-Thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003905

    Article  Google Scholar 

  • Sanbonsuge K, Vasconcelos K, Bernucci L, Moura E (2017) Efeito da umidade inicial e do tempo de curva nas propriedades mecânicas de misturas solo-cimento (Effect of initial moisture and curing time on the mechanical properties of soil-cement mixtures). Transportes 25(4):68–82. https://doi.org/10.14295/transportes.v25i4.1257

    Article  Google Scholar 

  • Santamarina JC, Klein K, Fam M (2001) Soils and waves. Wiley, New York

    Google Scholar 

  • Sarro WS, Assis GM, Ferreira GCS (2021) Experimental investigation of the UPV wavelength in compacted soil. Constr Build Mater 272:1–8. https://doi.org/10.1016/j.conbuildmat.2020.121834

    Article  Google Scholar 

  • Sarro WS, Ferreira GCDS, Galletto A (2015) Técnica de ultrassom aplicada na inspeção de edificações construídas em solo compactado (Ultrasound technique applied in building inspection built in soil). In: Proceedings on 57° Congresso Brasileiro do Concreto, CBC2015, IBRACON, Brazil

  • Sarro WS, Ferreira GCS (2019) Soil elastic modulus determined by Ultrasound tests. Soil Rocks 42(2):117–126. https://doi.org/10.28927/SR.422117

    Article  Google Scholar 

  • Sasanian S, Newson TA (2014) Basic parameters governing the behaviour of cement-treated clays. Soils Found 54(2):209–224. https://doi.org/10.1016/j.sandf.2014.02.011

    Article  Google Scholar 

  • Selçuk L, Seker V (2019) Predicting California bearing ratio of foundation soil using ultrasonic pulse velocity. Proc Inst Civ Eng Geotech Eng 172(4):320–330. https://doi.org/10.1680/jgeen.18.00053

    Article  Google Scholar 

  • Sharma LK, Sirdesai NN, Sharma KM, Singh TN (2018) Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: a comparative study. Appl Clay Sci 152:183–195. https://doi.org/10.1016/j.clay.2017.11.012

    Article  CAS  Google Scholar 

  • Suh H, Jee H, Kim J, Kitagaki R, Ohki S, Woo S, Jeong K, Bae S (2020) Influences of rehydration conditions on the mechanical and atomic structural recovery characteristics of Portland cement paste exposed elevated temperatures. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117453

    Article  Google Scholar 

  • Tabet WE, Cerato AB, Elwood Madden AS, Jentoft RE (2018) Characterization of hydration products’ formation and strength development in cement-stabilized kaolinite using TG and XRD. J Mater Civ Eng 30(10):2018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002454

    Article  Google Scholar 

  • Teixeira I, Sarro WS, Cardoso SM, Macedo G, Ferreira GCS (2015) Influência da granulometria e umidade nas propriedades de solos a partir de ensaios destrutivos e não destrutivos (Influence of grain size distribution and moisture content on soil properties from destructive and non-destructive tests). In: Proceedings on XXIX Congresso Nacional de Pesquisa em Transporte da ANPET, Ouro Preto, Brazil

  • Venson GI (2015) Módulo de resiliência e vida de fadiga de areia artificialmente cimentada. Dissertation (in Portuguese), Federal University of Rio Grande do Sul

  • Vinoth G, Moon S-W, Moon J, Ku T (2018) Early strength development in cement-treated sand using low-carbon rapid-hardening cements. Soils Found 58(5):1200–1211. https://doi.org/10.1016/j.sandf.2018.07.001

    Article  Google Scholar 

  • Wang B, Zhong S, Lee TL, Francey KS, Mi J (2020) Non-destructive testing and evaluation of composite materials/structures: a state of the art review. Adv Mech Eng. https://doi.org/10.1177/1687814020913761

    Article  Google Scholar 

  • Wang Y, Han JQ (2020) Geomechanical and ultrasonic characteristics of black shale during triaxial deformation revealed using real-time ultrasonic detection dependence upon bedding orientation and confining pressure. Geotech Geol Eng 38:6773–6794. https://doi.org/10.1007/s10706-020-01468-2

    Article  Google Scholar 

  • Wei Y, Yao W, Xing X, Wu M (2012) Quantitative evaluation of hydrated cement modified by silica fume using QXRD, AI MASNMR, TG-DSC and selective dissolution techniques. Constr Build Mater 36:925–932. https://doi.org/10.1016/j.conbuildmat.2012.06.075

    Article  Google Scholar 

  • Weidinger DM, Ge L, Stephenson RW (2009) Ultrasonic pulse velocity tests on compacted soil. GeoHunan Int Conf. https://doi.org/10.1061/41041(348)22

    Article  Google Scholar 

  • Wu J, Liu L, Deng Y, Zhang G, Zhou A, Wang Q (2021) Distinguishing the effects of cementation versus density on the mechanical behavior of cement-based stabilized clays. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121571

    Article  Google Scholar 

  • Ye G, Lura P, Van Breugel K, Fraaji ALA (2004) Study on the development of the microstructure in cement-based materials by means of numerical simulation and ultrasonic pulse velocity measurement. Cement Concr Compos 26:491–497. https://doi.org/10.1016/S0958-9465(03)00081-7

    Article  CAS  Google Scholar 

  • Yesiller N, Inci G, Miller CJ (2000) Ultrasonic testing for compacted clayey soils. In: Shackelford CD, Houston SL, Chang Ny (eds) Proceedings of Geo-Denver 2000: advances in unsaturated geotechnics. American Society of Civil Engineers, Reston, VA, USA, Geotechnical Special Publication vol. 99, pp. 54–68

  • Yim HJ, An YK, Kim JH (2016) Water depercolation of setting cement paste evaluated by diffuse ultrasound. Cement Concr Compos 71:10–19. https://doi.org/10.1016/j.cemconcomp.2016.04.003

    Article  CAS  Google Scholar 

  • Yoo DY, Shin HO, Yoon YS (2016) Ultrasonic monitoring of setting and strength development of ultra-high-performance concrete. Materials. https://doi.org/10.3390/ma9040294

    Article  Google Scholar 

  • Youn JU, Choo YW, Kim DS (2008) Measurement of small-train shear modulus Gmax of dry and saturated sands by bender element, resonant column and torsional shear tests. Can Geotech J 45(10):1426–1438. https://doi.org/10.1139/T08-069

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Funding

The authors acknowledge the funding support provided by CAPES to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géssica Soares Pereira.

Ethics declarations

Conflict of Interest

The authors have no competing interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, G.S., Pitanga, H.N., Ferraz, R.L. et al. Ultrasonic Analysis of Artificial Cementation Effects on Tropical Clay Soils. Geotech Geol Eng 42, 2529–2553 (2024). https://doi.org/10.1007/s10706-023-02690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-023-02690-4

Keywords

Navigation