Skip to main content
Log in

Numerical Modeling of the Oedometrical Behavior of Collapsible Loess

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Loess covers more than 10% of continental lands all around the world. The macrostructure of these soils collapses when water content increases, greatly decreasing soil volume. Two mechanisms are responsible for the collapse: the expansion of clay bridges and/or the dissolution of precipitated salts that join coarse particles forming an open microstructure. Double oedometer tests are widely used in geotechnical practice to estimate relative collapse or collapse potential. The main goal of this work is to evaluate the stress–strain behavior under zero-lateral displacement conditions of undisturbed loess samples tested at natural moisture content and inundated with water. Numerical models are developed by using the Comsol Multiphysics Software. Two elastoplastic models were implemented: the modified Cam Clay model (MCC) and the extended Barcelona Basic model (EBB). Numerical models were calibrated with experimental data by using a least square technique. The results show the capacity and limitations of the MCC and EBB models to represent the mechanical behavior of collapsible loess before and after water flooding. This work demonstrates the potential of the EBB model to predict the mechanical behavior of loess, using a limited amount of data obtained from uncontrolled-suction oedometer tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso EE, Gens A, Josa A (1990) Discussion: a constitutive model for partially saturated soils. Géotechnique 41:405–430

    Article  Google Scholar 

  • El-Ehwany M, Houston SL (1991) Settlement and moisture movement in collapsible soils 116:1521–1535

  • Francisca FM (2007) Evaluating the constrained modulus and collapsibility of loess from standard penetration test. Int J Geomech 7:307–310. https://doi.org/10.1061/(asce)1532-3641(2007)7:4(307)

    Article  Google Scholar 

  • Francisca FM, Redolfi ER, Prato CA (2002) Análisis de Tuberías Enterradas en Suelos Loéssicos: Efecto de la Saturación del Suelo. Revista Internacional De Desastres Naturales, Accidentes e Infraestructura Civil 2(2):3–19

    Google Scholar 

  • Francisca FM, Redolfi ER (2003) Parametric analysis of the deflections of flexible pipes in collapsible soils. In: 12th Panamerican conference on soil mechanics and geotechnical engineering, Jun 22–25, ISBN: 3-7739-5985-0, Boston, USA, pp 2073–2079

  • Gens A, Sánchez M, Sheng D (2006) On constitutive modelling of unsaturated soils. Acta Geotech 1:137–147

    Article  Google Scholar 

  • Ghorbani J, Nazem M, Carter JP (2016) Numerical modelling of multiphase flow in unsaturated deforming porous media. Comput Geotech 71:195–206. https://doi.org/10.1016/j.compgeo.2015.09.011

    Article  Google Scholar 

  • Huang M, Fredlund DG, Fredlund MD (2010) Comparison of measured and PTF predictions of SWCCs for loess soils in China. Geotech Geol Eng 28:105–117. https://doi.org/10.1007/s10706-009-9284-x

    Article  Google Scholar 

  • Jennings JE, Knight K (1957) A guide to construction on or with materials exhibited additional settlement due to collapse of grain structure. In: Proceedings of 6th regional conference Africa soil mechanical foundation on engineering Durban, South Africa, pp 99–105

  • Jiang MJ, Li T, Hu HJ, Thornton C (2014) DEM analyses of one-dimensional compression and collapse behaviour of unsaturated structural loess. Comput Geotech 60:47–60. https://doi.org/10.1016/j.compgeo.2014.04.002

    Article  Google Scholar 

  • Jiang M, Li T, Thornton C, Hu H (2016) Wetting-induced collapse behavior of unsaturated and structural loess under biaxial tests using distinct element method. Int J Geomech 17:1–12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000693

    Article  Google Scholar 

  • Jiang M, Zhang F, Hu H (2017) DEM modeling mechanical behavior of unsaturated structural loess under constant stress increment ratio compression tests. Int J Geomech 17:1–15. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000762

    Article  Google Scholar 

  • Jin X, Wang TH, Cheng WC, Luo Y, Zhou A (2019) A simple method for settlement evaluation of loess–pile foundation. Can Geotech J 56(11):1690–1699

    Article  Google Scholar 

  • Jing Y, Jia Z, Zhang Z, Lv Y, Wang L, Tao C (2020) Study on the method for determination of the maximum depth of loess collapsible under overburden pressure. Bull Eng Geol Env 79:1509–1521

    Article  Google Scholar 

  • Kohgo Y, Nakano M, Miyazaki T (1993) Theorical aspects of constitutive modelling for unsaturated soils. Soils Found 33:49–63

    Article  Google Scholar 

  • Li P, Vanapalli SK (2018) Simple method for prediction of the soil collapse behavior due to wetting. Int J Geomech 18:1–5. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001285

    Article  Google Scholar 

  • Li P, Vanapalli S, Li T (2016) Review of collapse triggering mechanism of collapsible soils due to wetting. J Rock Mech Geotech Eng 8:256–274

    Article  Google Scholar 

  • Li Y, Shi W, Aydin A, Beroya-Eitner MA, Gao G (2019) Loess genesis and worldwide distribution. Earth Sci Rev 102947

  • Munõz-Castelblanco J, Delage P, Pereira JM, Cui YJ (2011) Some aspects of the compression and collapse behaviour of an unsaturated natural loess. Geotech Lett 1:17–22. https://doi.org/10.1680/geolett.11.00003

    Article  Google Scholar 

  • Muñoz-Castelblanco JA, Pereira JM, Delage P, Cui YJ (2012) The water retention properties of a natural unsaturated loess from northern France. Geotechnique 62:95–106. https://doi.org/10.1680/geot.9.P.084

    Article  Google Scholar 

  • Ng CWW, Sadeghi H, Hossen SB et al (2016) Water retention and volumetric characteristics of intact and re- compacted loess: a laboratory testing program was conducted to investigate the effects of microstructure on water. Can Geotech J 53:1258–1269

    Article  Google Scholar 

  • Ng CWW, Sadeghi H, Jafarzadeh F et al (2020) Effect of microstructure on shear strength and dilatancy of unsaturated loess at high suctions. Can Geotech J 57:221–235. https://doi.org/10.1139/cgj-2018-0592

    Article  Google Scholar 

  • Patil UD, Hoyos LR, Puppala AJ (2016) Modeling essential elastoplastic features of compacted silty sand via suction-controlled triaxial testing. Int J Geomech 16(6):1–22. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000726

    Article  Google Scholar 

  • Patil UD, Hoyos LR, Morvan M, Puppala AJ (2018) Bounding surface-based modeling of compacted silty sand exhibiting suction dependent postpeak strain softening. Int J Numer Anal Methods Geomech 42:1741–1761. https://doi.org/10.1002/nag.2837

    Article  Google Scholar 

  • Pedroso DM, Farias MM (2011) Extended Barcelona Basic Model for unsaturated soils under cyclic loadings. Comput Geotech 38:731–740

    Article  Google Scholar 

  • Pereira JH, Fredlund DG (2000) Volume change behavior of collapsible compacted gneiss soil. Journal of Geotechnical and Geoenvironmental Engineering 126(10):907–916. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:10(907)

    Article  Google Scholar 

  • Reginatto A, Ferrero JC (1973) Collapse potential of soils and soil-water chemistry. III Int Conf Soil Mech Found Eng Moscow 2(2):177–183

    Google Scholar 

  • Rinaldi VA, Francisca FM (1999) Dielectric permittivity of loess from the central area of Argentina. In: XI Panamerican conference on soil mechanics and geotechnical engineering, Foz do Iguassu, Brazil, vol 1, pp 209–216

  • Rinaldi V, Zeballos M, Rocca R (2007) Geotechnical characterization and behaviour of Argentinean collapsible loess. In: Second international workshop on characterisation and engineering properties of natural soils

  • Rogers CDF, Dijkstra TA, Smalley IJ (1994) Hydroconsolidation and subsidence of loess: Studies from China, Russia, North America and Europe. In memory of Jan Sajgalik. Eng Geol 37:83–113. https://doi.org/10.1016/0013-7952(94)90045-0

    Article  Google Scholar 

  • Roscoe KH, Burland JB (1968) On the generalized stress-strain behavior of "wet" clay. Engineering Plasticity (J. Heyman), Cambridge University Press

  • Sheng D, Fredlund DG, Gens A (2008) A new modelling approach for unsaturated soils using independent stress variables. Can Geotech J 45:511–534. https://doi.org/10.1139/t07-112

    Article  Google Scholar 

  • Smalley IJ, Smalley V (1983) Loess material and loess deposits: formation, distribution and consequences. In: Developments in sedimentology, vol 38, pp 51–68. Elsevier

  • Sun D, Sheng D, Sloan SW (2007) Elastoplastic modelling of hydraulic and stress-strain behaviour of unsaturated soils. Mech Mater 39:212–221. https://doi.org/10.1016/j.mechmat.2006.05.002

    Article  Google Scholar 

  • Terzariol RE (2009) 40 años de estudio de los suelos loéssicos. In: Francisca FM (ed) Desafíos y avances de la geotecnia joven en Sudámerica. In: Memorias de las III Conferencia Sudamericana de Ingenieros Geotécnicos Jóvenes, Córdoba, Argentina

  • Wheeler SJ, Gallipoli D, Karstunen M (2002) Comments on use of the Barcelona Basic Model for unsaturated soils. Numer Anal Methods Geomech 16(15):1561–1571.https://doi.org/10.1002/nag.259

  • Wood DM (1992) Soil behaviour and critical state soil mechanics

  • Zárate MA (2003) Loess of southern South America. Quat Sci Rev 22:1987–2006

    Article  Google Scholar 

  • Zeballos M, Redolfi ER, Blundo M (1999) Settlements generated by fluctuation in the phreatic level. In: XI Pan American conference on soil mechanics and geotechnical engineering, Iguazú, vol 2, pp 999–1005

  • Zhu Y, Jia X, Qiao J, Shao MA (2019) What is the mass of loess in the Loess Plateau of China? Sci Bull 64(8):534–539

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) [grant numbers 11220150100298CO, PUE-49765] and the Secretaría de Ciencia y Técnica—Universidad Nacional de Córdoba SECyT-UNC [grant number 30720150100665CB]. IG thanks CONICET for the doctorate fellowship and ISEA (SECyT-UNC) for the use of facilities.

Funding

Secretaria de Ciencia y Tecnología—Universidad Nacional de Córdoba, 30720150100665CB, Franco M. Francisca, Consejo Nacional de Investigaciones Científicas y Técnicas, PUE-49765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco M. Francisca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giomi, I., Francisca, F.M. Numerical Modeling of the Oedometrical Behavior of Collapsible Loess. Geotech Geol Eng 40, 2501–2512 (2022). https://doi.org/10.1007/s10706-021-02042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-021-02042-0

Keywords

Navigation