Skip to main content
Log in

3D Seismic Stability Analysis of Bench Slope with Pile Reinforcement

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Pile reinforcement has been widely applied to ensure the stability of slopes. However, few investigations have been conducted on multi-stage or bench slopes reinforced with piles. To give a brief stability description of such slopes, a three-dimensional kinematic analysis of pile reinforced bench slopes under static and seismic effects is carried out in this paper. The analytical expression of the seismic safety factor is derived by combining the pseudo-static method and the strength reduction method. Then comparisons were carried out to verify the obtained solutions. A detailed parametric study was also implemented to explore the variation rule of the safety factor. The effect of several factors, such as the pile location, friction angle, horizontal seismic force coefficient, slope width, bench width, were discussed. The results indicate that the pile location near/on the bench can raise the safety factor by nearly 30% than those on the slope toe. Furthermore, a 20% increase in safety factor can be achieved as the length of the bench increases from 0 to 4 m. Therefore, ignoring the benches in the calculation process will lead to a rather conservative solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cai F, Ugai K (2000) Numerical analysis of the stability of a slope reinforced with piles. Soils Found 40:73–84

    Article  Google Scholar 

  • Chen CY, Martin GR (2002) Soil-structure interaction for landslide stabilizing piles. Comput Geotech 29:363–386. https://doi.org/10.1016/S0266-352X(01)00035-0

    Article  Google Scholar 

  • Chow YK (1996) Analysis of piles used for slope stabilization. Int J Numer Anal Meth Geomech 20:635–646. https://doi.org/10.1002/(SICI)1096-9853(199609)20:9%3c635::AID-NAG839%3e3.0.CO;2-X

    Article  Google Scholar 

  • Duncan JM (1996) State-of-the-art: limit equilibrium and finite element analysis of slopes[J]. J Geotech Eng 122(7):577–596

    Article  Google Scholar 

  • Gao YF, Zhang F, Lei GH et al (2013) Stability charts for 3D failures of homogeneous slopes[J]. J Geotech Geoenviron Eng 139(9):1528–1538

    Article  Google Scholar 

  • Gao YF, Zhang F, Lei GH (2014) Stability analysis of three-dimensional slopes under water drawdown conditions[J]. Can Geotech J 51(6):1355–1364

    Article  Google Scholar 

  • Gao YF, Ye M, Zhang F (2015) Three-dimensional analysis of slopes reinforced with piles[J]. J Cent South Univ 22(6):2322–2327

    Article  Google Scholar 

  • Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Géotechnique 49:387–403

  • Hassiotis S, Chameau JL, Gunaratne M (1997) Design method for stabilization of slopes with piles[J]. J Geotech Geoenviron Eng 123(4):314–323

    Article  Google Scholar 

  • He Y, Hazarika H, Yasufuku N, Han Z, Li Y (2015) Three-dimensional limit analysis of seismic displacement of slope reinforced with piles[J]. Soil Dyn Earthq Eng 411(77):446–452

    Article  Google Scholar 

  • Hull TS, Poulos HG (1999) Design method for stabilization of slopes with piles (discussion). J Geotech Geoenviron Eng 125:911–913. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:10(911)

    Article  Google Scholar 

  • Ito T, Matsui T (1975) Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Found 15(4):43–59

    Article  Google Scholar 

  • Ito T, Matsui T, Hong WP (1981) Design method for stabilizing piles against landslide-one row of piles[J]. Soils and Found 21(1):21–37

    Article  Google Scholar 

  • Jeong S, Kim B, Won J, Lee J (2003) Uncoupled analysis of stabilizing piles in weathered slopes. Comput Geotech 30:671–682. https://doi.org/10.1016/j.compgeo.2003.07.002

    Article  Google Scholar 

  • Lee CY, Hull TS, Poulos HG (1995) Simplified pile–slope stability analysis. Comput Geotech 17:1–16. https://doi.org/10.1016/0266-352X(95)91300-S

    Article  Google Scholar 

  • Li ZW, Yang XL (2018) Active earth pressure for soils with tension cracks under steady unsaturated flow conditions[J]. Can Geotech J 55(12):1850–1859

    Article  Google Scholar 

  • Li XP, He SM, Wang CH (2006) Stability analysis of slopes reinforced with piles using limit analysis method[J]. J Neural Eng 9(1):16005–16016

    Google Scholar 

  • Michalowski RL (2013) Three-dimensional limit analysis of slopes with pore pressure[J]. J Geotech Geoenviron Eng 139(9):1604–1610

    Article  Google Scholar 

  • Michalowski RL, Drescher A (2009) Three-dimensional Stability of Slopes and Excavations[J]. Geotechnique 59(10):839–850

    Article  Google Scholar 

  • Ng CWW, Zhang LM, Ho KKS (2001) Influence of laterally loaded sleeved piles and pile groups on slope stability. Can Geotech J 38:553–566. https://doi.org/10.1139/cgj-38-3-553

    Article  Google Scholar 

  • Nian TK, Chen GQ, Luan MT et al (2008) Limit analysis of the stability of slopes reinforced with piles against landslide in nonhomogeneous and anisotropic soils[J]. Can Geotech J 45:1092–1103

    Article  Google Scholar 

  • Poulos HG (1995) Design of reinforcing piles to increase slope stability. Can Geotech J 32:808–818. https://doi.org/10.1139/t95-078

    Article  Google Scholar 

  • Ugai K (1989) A method of calculation of total factor of safety of slopes by elasto-plastic FEM. Soils Found 29:190–195

    Article  Google Scholar 

  • Won J, You K, Jeong S, Kim S (2005) Coupled effects in stability analysis of pile-slope systems. Comput Geotech 32:304–315. https://doi.org/10.1016/j.compgeo.2005.02.006

    Article  Google Scholar 

  • Xu J, Li Y, Yang X (2018) Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope[J]. Geomech Eng 14(1):71–81

    Google Scholar 

  • Yang XL, Long ZX (2015) Seismic and static 3D stability of two-stage rock slope based on hoek-brown failure criterion[J]. Can Geotech J 53(3):551–558

    Article  Google Scholar 

  • Yang XL, Pan QJ (2015) Three dimensional seismic and static stability of rock slopes[J]. Geomech Eng 8(1):97–111

    Article  Google Scholar 

  • Yang XL, Xu JS (2017) Three-dimensional stability of two-stage slope in inhomogeneous soils[J]. Int J Geomech 17(7):06016045

    Article  Google Scholar 

  • Zeng S, Liang R (2002) Stability analysis of drilled shafts reinforced slope. Soils Found 42:93–102

    Article  Google Scholar 

  • Zienkiewicz OC, Humpheson C, Lewis RW (1975) Associated and non-associated visco-plasticity and plasticity in soil mechanics. Géotechnique 25:671–684

Download references

Acknowledgements

The authors sincerely thank the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-yu Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

$$f_{1} (\theta_{h} ,\theta_{0} ) = \frac{1}{{3(1 + 9\tan^{2} \varphi )}}\left\{ {(3\tan \varphi \cos \theta_{h} + \sin \theta_{h} )\exp \left[ {3(\theta_{h} - \theta_{0} )\tan \varphi } \right] - (3\tan \varphi \cos \theta_{0} + \sin \theta_{0} )} \right\}$$
$$f_{2} (\theta_{h} ,\theta_{0} ) = \frac{1}{6}\frac{L}{{r_{0} }}(2\cos \theta_{0} - \frac{L}{{r_{0} }})\sin (\theta_{0} )$$
$$f_{3} = \frac{{\alpha_{2} }}{3}\frac{H}{{r_{0} }}[(\cos \theta_{0} )^{2} + (\frac{{L_{1} }}{{r_{0} }})^{2} - 2\frac{{L_{1} }}{{r_{0} }}\cos \theta_{0} + \sin \theta_{0} \cot \beta_{2} (\cos \theta_{0} - \frac{{L_{1} }}{{r_{0} }}) \, - \frac{{\alpha_{2} }}{2}\frac{H}{{r_{0} }}\cot \beta_{2} (\cos \theta_{0} - \frac{{L_{1} }}{{r_{0} }} + \sin \theta_{0} \cot \beta_{2} )]$$
$$f_{4} = \frac{{L_{2} }}{{r_{0} }}\{ \alpha_{2} \frac{H}{{r_{0} }}[\cos \theta_{0} + \frac{{L_{1} }}{{r_{0} }} - \alpha_{2} \frac{H}{{r_{0} }}\cot \beta_{2} - \sin \theta_{0} \cot \beta_{2} - \frac{1}{2}\frac{{L_{2} }}{{r_{0} }}] - \frac{{L_{1} }}{{r_{0} }}\sin \theta_{0} + \sin \theta_{0} \cos \theta_{0} - \frac{1}{2}\frac{{L_{2} }}{{r_{0} }}\sin \theta_{0} \}$$
$$f_{5} (\theta_{h} ,\theta_{0} ) = \frac{1}{3}\frac{H}{{r_{0} }}\{ \cot \beta_{1} [\cos \theta_{h} + \sin \theta_{h} \cot \beta_{1} ] + [(\cos \theta_{h} )^{2} + \sin \theta_{h} \cos \theta_{h} \cot \beta_{1} ]e^{{(\theta_{h} - \theta_{0} )\tan \varphi }} \} e^{{(\theta_{h} - \theta_{0} )\tan \phi }}$$
$$f_{6} (\theta_{h} ,\theta_{0} ) = \frac{1}{{3(1 + 9\tan^{2} \varphi )}}\left\{ {(3\tan \varphi \sin \theta_{h} - \cos \theta_{h} )\exp \left[ {3(\theta_{h} - \theta_{0} )\tan \varphi } \right] - (3\tan \varphi \sin \theta_{0} - \cos \theta_{0} )} \right\}$$
$$f_{7} (\theta_{h} ,\theta_{0} ) = \frac{1}{3}\frac{{L_{1} }}{{r_{0} }}(\sin \theta_{0} )^{2}$$
$$f_{8} (\theta_{h} ,\theta_{0} ) = \frac{{\alpha_{2} }}{3}\frac{H}{{r_{0} }}[\cot \beta_{2} (\sin \theta_{0} )^{2} + \sin \theta_{0} \cos \theta_{0} - \frac{{L_{1} }}{{r_{0} }}\sin \theta_{0} + \frac{{\alpha_{2} }}{2}\frac{H}{{r_{0} }}\cot \beta_{2} \sin \theta_{0} + \frac{{\alpha_{2} }}{2}\frac{H}{{r_{0} }}\cos \theta_{0} - \frac{{\alpha_{2} }}{2}\frac{H}{{r_{0} }}\frac{{L_{1} }}{{r_{0} }}]$$
$$f_{9} (\theta_{h} ,\theta_{0} ) = \frac{1}{3}\frac{{L_{2} }}{{r_{0} }}(\alpha_{2} \frac{H}{{r_{0} }} + \sin \theta_{0} )^{2}$$
$$f_{10} (\theta_{h} ,\theta_{0} ) = \frac{{\alpha_{1} }}{3}\frac{H}{{r_{0} }}(e^{{(\theta_{h} - \theta_{0} )\tan \varphi }} \sin \theta_{h} - \frac{{\alpha_{1} }}{2}\frac{H}{{r_{0} }})(\cos \theta_{h} + \sin \theta_{h} \cot \beta_{1} )e^{{(\theta_{h} - \theta_{0} )\tan \varphi }}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Sy., Wang, Z., Wang, Jm. et al. 3D Seismic Stability Analysis of Bench Slope with Pile Reinforcement. Geotech Geol Eng 40, 1149–1163 (2022). https://doi.org/10.1007/s10706-021-01949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-021-01949-y

Keywords

Navigation