Skip to main content

Relationships Between Petrophysical and Mechanical Properties of Certain Calcarenites Used in Building

Abstract

Mendicino calcarenite was once widely used in traditional constructions by Italy’s foremost stonemasons’ schools. This paper provides a complete physico-mechanical characterization in order to improve understanding of strength and durability properties and so apply that knowledge to conservation and new construction. Stone samples from three lithofacies are taken from the following quarries of Cosenza province: Scannelle in Malito; Cannataro in Carolei; Albanese in San Lucido. Samples are subjected to: X-ray diffraction, mercury intrusion porosimetry, ultrasonic pulse velocity, capillary water absorption, uniaxial compressive, flexural, point load tests with respect to the X, Y, Z axes. Malito samples exhibit creamy colour, better hydric behaviour, low open porosity, reduced water absorption capability, isotropic hydric behaviour, higher fossil abundance (both in number and size) than the lithofacies taken from Carolei and San Lucido, which exhibit whitish colour, greater strength and more homogeneous texture. The greater compactness of Carolei and San Lucido samples can be ascribed to homogeneity and low porosity and their better mechanical properties to textural features. Anisotropy plays an important role. Placing stone samples along the Z axis prevents water intrusion, and improves mechanical strength. Isotropy and compact and heterogeneous fabric in stones result in higher strength and lower water absorption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Alessandrini G, Bocci A, Bugini R, Emmi D, Peruzzi R, Realini M (1992) Stone materials of Noto (Siracusa) and their decay. In: Proceedings of the 7th International Conference: deterioration and conservation of stone, Lisbon, pp11–20

  • Anon (1979) Classification of rocks and soils for engineering geological mapping: part 1—rock and soil materials. Bull Int Assoc Eng Geol 19:64–371

    Google Scholar 

  • Anon (1997) The description of rock masses for engineering purposes. Q J Eng Geol Hydrogeol 10:355–388

    Google Scholar 

  • ASTM (2008) Standard test method for determination of the point load strength index of rock and application to rock strength classifications. ASTM International, Philadelphia, Pa

    Google Scholar 

  • Basu A, Aydin A (2006) Evaluation of ultrasonic testing in rock material characterization. Geotech Test J 29:117–125

    Google Scholar 

  • Basu A, Mishra DA, Roychowdhury K (2013) Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull Eng Geol Env 72:457–475. DOI https://doi.org/10.1007/s10064-013-0505-4

    Article  Google Scholar 

  • Bell FG, Lindsay P (1999) The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa. Eng Geol 53:57–81

    Article  Google Scholar 

  • Benavente D, Medina-Lapeña FJ, Martínez-Martínez J, Cueto N, García-del-Cura MA (2009) Influencia de la petrografía en las propiedades petrofísicas y de durabilidad del Travertino Clásico. Valoración de su anisotropía. Geogaceta 46:147–250

    Google Scholar 

  • Buj Fandos O (2009) Caracterización tecnológica de las rocas aragonesas de usos constructivos: propiedades hídricas y durabilidad de las rocas con uso ornamental. 1st Edition, Zaragoza, Consejo Económico y social de Aragón, 250 pp

  • Carmichel RS (1989) Practical hanbook of physical properties of rocks and mineral. CRS, Press Inc., USA

    Google Scholar 

  • Colella A (1995) Sedimentation, deformational events and eustacy in the perityrrhenian Amantea Basin: preliminary synthesis. Giorn Geol 57(I-2):179–193

    Google Scholar 

  • Crisci GM, De Francesco AM, Gattuso C, Miriello D (2003) Un metodo geochimico per la determinazione della provenienza di lapidei macroscopicamente omogenei. Un esempio di applicazione sui monumenti del centro storico di Cosenza. Arkos – Scienze e Restauro dell’architettura 2, 4th year, April–June, 52–59

  • Critelli S, Muto F, Perri F, Tripodi V (2017) Interpreting provenance relations from sandstone detrital modes, Southern Italy Foreland Region: stratigraphic record of the Miocene tectonic evolution. Marine Pet Geol 87: 47–59 https://doi.org/10.1016/j.marpetgeo.2017.01.026

    Article  Google Scholar 

  • Critelli S, Le Pera E (2000) Geological Map of Calabria, scale 1:330000. In: Gabriele S (ed) Valutazione delle Piene in Calabria. Caratteristiche morfometriche dei bacini della Calabria. Soveria Mannelli, Italy, Rubbettino

    Google Scholar 

  • Critelli S (2018) Provenance of Mesozoic to Cenozoic Circum-Mediterranean sandstones in relation to tectonic setting. Earth Sci Rev 185:624–648

    Article  Google Scholar 

  • Dai F, Xia K, Zuo JP, Zhang R, Xu NW (2013) Static and Dynamic Flexural Strength Anisotropy of Barre Granite. Rock Mech Rock Eng 46:1589–1602

    Article  Google Scholar 

  • Douglass PM, Voight B (1969) Anisotropy of granites: a reflection of microscopic fabric. Geotechnique 19(3):376–379

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed), Classification of carbonate rocks. American Association of Petroleum Geologists Memories, 108–210

    Google Scholar 

  • EN (2000) Metodi di prova per pietre naturali - Determinazione del coefficiente di assorbimento d’acqua per capillarità. 1925, Ente Nazionale Italiano di Unificazione, Milan, Italy

  • EN (2000) Metodi di prova per pietre naturali - Determinazione della resistenza a compressione. 1926, Ente Nazionale Italiano di Unificazione, Milan, Italy

  • EN (2001) Metodi di prova per pietre naturali - Determinazione della resistenza a flessione sotto carico concentrato. 12372. Ente Nazionale Italiano di Unificazione, Milan

    Google Scholar 

  • EN (2005) Metodi di prova per pietre naturali - Determinazione della velocità di propagazione del suono. 14579, Ente Nazionale Italiano di Unificazione, Milan, Italy

  • EN (2007) Natural Stone Test Methods - Petrographic Examination, 12407. Ente Nazionale Italiano di Unificazione, Milan

    Google Scholar 

  • Esbert RM, Alonso FJ, Ordaz J (2008) La petrofísica en la interpretación del deterioro y la conservación de la piedra de edificación. Trabajos de Geología 28:87–95

    Google Scholar 

  • Forestieri G, Ponte M, De Francesco AM (2015) Historical building stones of Cosenza Province, Calabria (Italy): properties and weathering. In: Proceedings of the 6th International Conference Diagnosis, Conservation and Valorization of Cultural Heritage, In: Campanella L, Piccioli C, (eds.), Naples, Italy, pp. 107–117

  • Forestieri G, Campolongo A, Ponte M (2016a) La pietra e l’architettura. Analisi storica e materica del materiale lapideo nel territorio di Cosenza. In: Proceedings of the 2nd International Conference History of Engineering. In D’Agostino S (ed.), v.1, Naples, Italy, pp. 213–222

  • Forestieri G, Tedesco A, Ponte M, Olivito RS (2016b) Local building stones used in Calabrian architecture: calcarenite and sandstone of the Tyrrhenian Coastal Range of Cosenza Province (Italy). In: Proceedings of the 14th International Conference Le Vie dei Mercanti, C., Gambardella, ed., La scuola di Pitagora editrice, Naples, Italy, pp. 829–837

  • Forestieri G, Freire-Lista DM, De Francesco AM, Ponte M, Fort R (2017) Strength anisotropy in building granites.Int J Archit Herit 8:1–13. https://doi.org/10.1080/15583058.2017.1354096

    Article  Google Scholar 

  • Fort R, Varas MJ, Álvarez de Buergo M, Freire-Lista DM (2011) Determination of anisotropy to enhance the durability of natural stone. J Geophys Eng 8:132–144

    Article  Google Scholar 

  • Freire-Lista DM, Fort R (2017) Exfoliation microcracks in building granite: implications for anisotropy. Eng Geol 220:85–93

    Article  Google Scholar 

  • Günes Ylmaz N, Karaca Z, Goktan RM, Akal C (2009) Relative brittleness characterization of some selected granitic building stones: influence of mineral grain size. Constr Build Mater 23(1):370–375

    Article  Google Scholar 

  • Guydader J, Denis A (1986) Propagation des ondes dans les roches anisotropes sous contrainte évaluation de la qualité des schistes ardoisiers. Bull Eng Geol 33:49–55

    Google Scholar 

  • Honeyborne DB, Harris PB (1958) The structure of porous building stones and its relation to weathering behaviour. In: Proceedings of the 10th International Conference Symposium Colston Research Society, D.H., Everett, F.S., Stone, eds., London: Butterworths Scientific Publications, 343–65

  • ISRM (1981) Raccomandazioni ISRM per la misura della resistenza al punzonamento. RIG 1:62–71

    Google Scholar 

  • Krus M (1995) Feuchtetransport- und Speicherkoeffizienten poröser mineralischer Baustoffe. Theoretische Grundlagen und neue Messtechniken, Diss Univ Stuttgart

  • La Russa MF, Belfiore CM, Fichera GV, Maniscalco R, Calabrò C, Ruffolo SA, Pezzino A (2015) The behaviour to weathering of the hyblean limestone in the Baroque architecture of the Val di Noto (SE Sicily): an experimental study on the “calcare a lumachella” stone. Constr Build Mater 77:7–19

    Article  Google Scholar 

  • Lico A (2015) Materiali lapidei e cave di approvvigionamento degli scalpellini roglianesi: risorse in Calabria e nella Provincia di Cosenza. In: La pietra, il mestiere e l’arte del decorare. Storia della lavorazione della pietra nella provincia di Cosenza. Pellegrini Editore, Cosenza, pp 74–91

    Google Scholar 

  • Martínez-Martínez J (2008) Influencia de la alteración sobre las propiedades mecánicas de calizas, dolomías y mármoles. Evaluación mediante estimadores no destructivos (Ultrasonidos), Ph.D. thesis, University of Alicante, 295 pp

  • Martínez-Martínez J, Benavente D, García-del-Cura MA (2011) Spatial attenuation: The most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks. Eng Geol 119:84–95

    Article  Google Scholar 

  • Mastandrea A, Perri E, Neri C, Russo F (2003) Conodont biostratigraphy of the Norian-Rhaetian deposits in the Northern Calabria: the Valle Corvino and Grisolia sections. Bollettino della Società Paleontologica Italiana 42(1–2):39–47

    Google Scholar 

  • Molina E, Cultrone G, Sebastian E, Alonso FJ, Carrizo L, Gisbert J, Buj O (2011) The pore system of sedimentary rocks as a key factor in the durability of building materials. Eng Geol 118:110–121

    Article  Google Scholar 

  • Molina E, Benavente D, Sebastian E, Cultrone G (2015) The influence of rock fabric in the durability of two sandstones used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). Eng Geol 197:67–81

    Article  Google Scholar 

  • Prikryl R (2001) Some microstructural aspects of strength variation in rocks. Int J Rock Mech Min Sci 38:671–682

    Article  Google Scholar 

  • Punturo R, Russo LG, Lo Giudice A, Mazzoleni P, Pezzino A (2006) Building stone employed in the historical monuments of Eastern Sicily (Italy): an example—the ancient city centre of Catania. Environ Geol 50(2):156–169. https://doi.org/10.1007/s00254-006-0195-3

    Article  Google Scholar 

  • Rodolico F (1995) Le pietre delle città d’Italia, 2nd edn. Ed. Le Monnier, Firenze

    Google Scholar 

  • Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landforms 24:191–209

    Article  Google Scholar 

  • Siegesmund S, Dürrast H (2014) Physical and mechanical mroperties of rocks. In: Siegesmund S, Snethlage R (eds) Stone in architecture: properties, durability. Springer, Berlin, 107–224

    Google Scholar 

  • Vasanelli E, Colangiuli D, Calia A, Sileo M, Aiello MA (2015) Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone. Ultrasonics 60:33–40

    Article  Google Scholar 

  • Vasconcelos G, LourenÒ«o PB, Alves CAS, Pamplona J (2008) Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics 48:453–466

    Article  Google Scholar 

  • Walsh JB (1965) The effect of cracks on the compressibility of rocks. J Geophys Res 70:381–389

    Article  Google Scholar 

  • Zoghlami K, Lopez-Arce P, Zornoza-Indart A (2016) Differential Stone Decay of the Spanish Tower Façade in Bizerte, Tunisia. J Mater Civil Eng ASCE https://doi.org/10.1061/(ASCE)MT.1943-5533.0001774

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by “Programa Geomateriales 2 (S2013/MIT-2914)” and by “Fondi 5 per mille D.P.C.M. 23/04/2010”. We also acknowledge Top Heritage (P2018/NMT-4372) programme from the Regional Government of Madrid (Spain). The authors wish to acknowledge professional support of the Interdisciplinary Thematic Platform from CSIC Open Heritage: Research and Society (PTI-PAIS).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to Giulia Forestieri.

Ethics declarations

Conflict of interest

Authors declare they do not have any conflitcs of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Forestieri, G., de Buergo, M.Á. Relationships Between Petrophysical and Mechanical Properties of Certain Calcarenites Used in Building . Geotech Geol Eng 39, 5021–5040 (2021). https://doi.org/10.1007/s10706-021-01810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-021-01810-2

Keywords

  • Building stones
  • Characterization
  • Anisotropy
  • Minero‐petrographical characterization
  • Mechanical properties