Skip to main content
Log in

Direct Calculation Method for the Analysis of Non-linear Behavior of Ground-Support Interaction of a Circular Tunnel Using Convergence Confinement Approach

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The convergence-confinement method is widely used in conventional tunneling at a preliminary stage of the support design. A circular tunnel through the ground in an initially isotropic stress state and the behavior of ground-support interaction simplified utilizing a two-dimensional plane-strain are postulated. From a point of view of practical application, the direct algorithm process so-called the direct calculation method (DCM) is proposed in this paper to deal with solving the solution of stresses/displacements between the ground reaction curve (GRC) and the support confining curve (SCC) in the final equilibrium state by applying the simultaneous equations in the elastic region and using the numerical analysis known as the Newton recursion method for finding roots of the non-linear equations in the plastic region. This explicit procedure also can realize the analytical solution to an executable computation that can be stepwise estimated by using a simple calculation spreadsheet. The validity of the developed method for the analytical solution was examined by the finite element analysis (FEM) to investigate the influence of mechanical properties of the ground and the time-dependent effects of the shotcrete lining-support on the GRC, SCC and stress path at the intrados of the tunnel. The agreement of results between DCM and FEM was found to be excellent in the elastic and elastic-perfectly plastic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CCM:

Convergence-confinement method

CLC:

Confinement loss curve

c :

Cohesion of the ground

DCM:

Direct calculation method

E :

Elastic modulus of the ground

E shot :

Elastic modulus of the shotcrete lining

G :

Shear modulus of the ground

GRC:

Ground reaction curve

K o :

In-situ initial stress ratio

k s :

Stiffness of the support

K p :

Coefficient \(K_{p} = \tan^{2} \left( {45^{ \circ } + \frac{\varphi }{2}} \right)\)

K ψ :

Coefficient \(K_{\psi } = \tan^{2} \left( {45^{ \circ } + \frac{\psi }{2}} \right)\)

LDP:

Longitudinal displacement profile

N :

Stability number \(N = \frac{{\sigma_{c} }}{{2\sigma_{v} }}\)

p s :

Support pressure

r :

Distance in the polar coordinate

R :

Radius of tunnel excavation

R p :

Plastic radius

\(R_{p}^{d}\) :

Plastic radius at a certain distance d to the working face

\(R_{p}^{s}\) :

Plastic radius in the equilibrium state

SCC:

Support confining curve

t shot :

Shotcrete thickness

u R :

Radial displacement at the intrados of tunnel

\(u_{R}^{d}\) :

Radial displacement at the supported distances d to the working face

\(u_{R}^{s}\) :

Radial displacement in the equilibrium state

\(u_{R}^{z}\) :

Radial displacement at the distances z to the working face

\(u_{R}^{\infty }\) :

Radial displacement at a great distance to the working face

Z :

Longitudinal axis of the tunnel

ϕ :

Friction angle of the ground

η :

Parameter of hyperbolic function

λ d :

Confinement loss λ at a certain distance d to the working face

λ z :

Confinement loss λ at a certain distance z to the working face

λ e :

Confinement loss in the elastic limit state

λ s :

Confinement loss in the equilibrium state

ν :

Poisson’s ratio of the ground

ν shot :

Poisson’s ratio of the shotcrete lining

θ :

Angle in polar coordinate

σ c :

Uniaxial compression strength (UCS) of the ground

σ R :

Radial stresses at the intrados of tunnel

\(\sigma_{R}^{d}\) :

Radial stresses at the intrados of tunnel at a certain distance d to the working face

\(\sigma_{R}^{s}\) :

Radial stresses at the intrados of tunnel in the equilibrium state

σ θ :

Tangential stresses at the intrados of tunnel

\(\sigma_{\theta }^{d}\) :

Tangential stresses at the intrados of the tunnel at a certain distance d to the working face

\(\sigma_{\theta }^{s}\) :

Tangential stresses at the intrados of the tunnel in the equilibrium state

σ v :

Overburden pressure

ψ :

Dilation angle of the ground

References

  • AFTES (1983) Recommandations pour l’emploi de la méthode convergence-confinement. Tunn Ouvrages Souterr 59:119–138

    Google Scholar 

  • Alejano LR, Rodriguez-Dono A, Alonso E, Fdez.-Manín G (2011) Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour. Tunn Undergr Space Technol 24:689–705

    Article  Google Scholar 

  • Bernaud D, Rosset G (1996) The new implicit method for tunnel analysis. Int J Numer Anal Methods Geomech 20(9):673–690

    Article  Google Scholar 

  • Brown ET, Bray JW, Ladanyi B, Hoek E (1983) Ground response curves for rock tunnels. J Geotech Eng ASCE 109:15–39

    Article  Google Scholar 

  • Carranza-Torres C (2004) Elasto-plastic solution of tunnel problems using the generalized form of the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 41(3):480–491

    Article  Google Scholar 

  • Carranza-Torres C, Fairhurst C (1999) The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 36:777–809

    Article  Google Scholar 

  • Carranza-Torres C, Fairhurst C (2000) Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek–Brown failure criterion. Tunn Undergr Space Technol 15(2):187–213

    Article  Google Scholar 

  • Cui L, Zheng J, Zhang R, Lai H (2015) A numerical procedure for the fictitious support pressure in the application of the convergence-confinement method for circular tunnel design. Int J Rock Mech Min Sci 78:336–349

    Article  Google Scholar 

  • De la Fuente M, Taherzadeh R, Sulem J et al (2019) Applicability of the convergence-confinement method to full-face excavation of circular tunnels with stiff support system. Rock Mech Rock Eng 52:2361–2376. https://doi.org/10.1007/s00603-018-1694-8

    Article  Google Scholar 

  • Detournay E, St. John JCM (1988) Design charts for a deep circular tunnel under non-uniform loading. Rock Mech Rock Eng 21:119–137

    Article  Google Scholar 

  • Gschwandtner G, Galler R (2012) Input to the application of the convergence confinement method with time-dependent material behavior of the support. Tunn Undergr Space Technol 27:13–22

    Article  Google Scholar 

  • Guan Z, Jiang Y, Tanabasi Y (2007) Ground reaction analyses in conventional tunnelling excavation. Tunn Undergr Space Technol 22:230–237

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Underground excavations in rock. The Institution of Mining and Metallurgy, London

    Google Scholar 

  • Kirsch G (1898) Die theorie der Elastizität und die bedürfnisse der festigkeitslehre. Zeit Ver Deut Ing J 42:797–807

    Google Scholar 

  • LCPC-ITECH (2003) CESAR-LCPC software package, CLEO2D reference manual, pp 114–117

  • Lee YL (1994) Prise en compte des non-linéarité de comportement des sols et des roches dans la modélisation du creusement d’un tunnel. Thèse, École Nationale des Ponts et Chaussées, France

  • Lee YL (2018) Explicit procedure and analytical solution for the ground reaction due to advance excavation of a circular tunnel in an anisotropic stress field. Geotech Geolog Eng 36:3281–3309. https://doi.org/10.1007/s10706-018-0537-4

    Article  Google Scholar 

  • Lee YL (2019) Incremental procedure method for the analysis of ground reaction due to excavation of a circular tunnel by considering the effect of overburden depth. Tunn Undergr Space Technol 93:1–16. https://doi.org/10.1016/j.tust.2019.103059

    Article  Google Scholar 

  • Lee YL, Hsu WK, Lin MY (2009) Analysis of the advancing effect and the confinement loss by using deformation measurement in tunneling. Chin J Rock Mech Eng 28(1):39–46

    Google Scholar 

  • Lee YL, Lin MY, Hsu WK (2008) Study of relationship between the confinement loss and the longitudinal deformation curve by using three-dimensional finite element analysis. Chin J Rock Mech Eng 27(2):258–265

    Google Scholar 

  • Mariee A, Belal A, El-Desouky A (2009) Application of the convergence confinement approach to analyze the rock-lining interaction in tunnels (case study: shimizu tunnels). In: 13th international conference on aerospace sciences & aviation technology, ASAT-13-CV-15, pp 1–15

  • Mousivand M, Maleki M (2017) Constitutive models and determining methods effects on application of convergence-confinement method in underground excavation. Geotech Geolog Eng 36:1707–1722

    Article  Google Scholar 

  • Mousivand M, Maleki M, Nekooei M, Msnsoori MR (2018) Application of convergence-confinement method in analysis of shallow non-circular tunnels. Geotech Geolog Eng 35:1185–1198

    Article  Google Scholar 

  • Nguyen MD, Guo C (1993) A ground support interaction principle for constant rate advancing tunnels. Proc Eurock Lisbon Portugal 1:171–177

    Google Scholar 

  • Oke J, Vlachopulos N, Dlederichs M (2018) Improvement to the convergence-confinement method: inclusion of support installation proximity and stiffness. J Rock Mech Rock Eng 51:1195–1519

    Article  Google Scholar 

  • Oreste PP (2003) Analysis of structural interaction in tunnels using the convergence-confinement approach. Tunn Undergr Space Technol 18:347–363

    Article  Google Scholar 

  • Oreste P (2007) A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports. Tunn Undergr Space Technol 22:185–205

    Article  Google Scholar 

  • Oreste P (2009) The convergence-confinement method: roles and limits in modern geomechanical tunnel design”. Am J Appl Sci 6(4):755–771

    Article  Google Scholar 

  • Oreste P, Peila D (1997) Modelling progressive hardening of shotcrete in convergence-confinement approach to tunnel design. Tunn Undergr Space Technol 12(3):425–431

    Article  Google Scholar 

  • Oreste P, Spagoli G (2016) A combined analytical and numerical approach for the evaluation of radial loads on the lining of vertical shaft. Geotech Geolog Eng 34:1057–1065

    Article  Google Scholar 

  • Pacher F (1964) Deformationsmessungen in Versuchsstollen als Mittel zur Erforschung des Gebirgsverhaltens und zur Bemessung des Ausbaues. Felsmechanik und Ingenieursgeologie Supplementum IV:149–161

    Google Scholar 

  • Panet M (1986) Calcul du souténement des tunnels à section circulaire par la method convergence-confinement avec un champ de contraintes initiales anisotrope. Tunn Ouvrages Souterr 77:228–232

    Google Scholar 

  • Panet M (1995) Le Calcul des Tunnels par la Méthode de Convergence-Confinement. Presses de l’Ecole Nationale des Ponts et Chaussées, Paris, France

  • Panet M (2001) Recommendations on the convergence-confinement method. Association Française des Tunnels et de l’Espace Souterrain (AFTES), pp 1–11

  • Panet M, Guellec P (1974) Contribution a l’étude du sousténement derrière le front de taille. In: Proceedings of 3rd congress international society rock mechanics part B, Denver, vol 2, pp 1130–1134

  • Panet M, Guenot A (1982) Analysis of convergence behind the face of a tunnel. In: Proceedings of international symposium tunelling’82, IMM, London, pp 197–204

  • Park KH, Kim YJ (2006) Analytical solution for a circular opening in an elastic–brittle–plastic rock. Int J Rock Mech Min Sci 43:616–622

    Article  Google Scholar 

  • Ravandi EG, Rahmannejad R (2013) Wall displacement prediction of circular, D shaped and modified horseshoe tunnels in anisotropic stress fields. Tunn Undergr Space Technol 34:54–60

    Article  Google Scholar 

  • Rodríguez R, Díaz-Aguado M (2013) Deduction and use of an analytical expression for the confining curve of a support based on yielding steel ribs. Tunn Undergr Space Technol 33:159–170

    Article  Google Scholar 

  • Serrano A, Olalla C, Reig I (2011) Convergence of circular tunnels in elastoplastic rock masses with non-linear failure criteria and non-associated flow laws. Int J Rock Mech Min Sci 48:878–887

    Article  Google Scholar 

  • Sharan SK (2003) Elastic–brittle–plastic analysis of circular openings in Heok–Brown media. Int J Rock Mech Min Sci 40:817–824

    Article  Google Scholar 

  • Sharan SK (2005) Exact and approximate solutions for displacements around circular openings in elastic-brittle plastic Hoek–Brown rock. Int J Rock Mech Min Sci 42:42–549

    Article  Google Scholar 

  • Shen B, Barton N (1997) The disturbed zone around tunnels in jointed rock masses. Int J Rock Mech Min Sci 34(1):117–125

    Article  Google Scholar 

  • Wang Y (1996) Ground response of a circular tunnel in poorly consolidated rock. J Geotech Eng ASCE 122(9):703–708

    Article  Google Scholar 

  • Wong RCK, Kaiser PK (1991) Performance assessment of tunnels in cohesion less soils. J Geotech Eng ASCE 117(12):1880–1901

    Article  Google Scholar 

  • Wong H, Subrin D, Dias D (2006) Convergence-confinement analysis of a bolt-supported tunnel using the homogenization method. Can Geotech J 43:462–483

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Lin Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YL., Hsu, WK., Lee, CM. et al. Direct Calculation Method for the Analysis of Non-linear Behavior of Ground-Support Interaction of a Circular Tunnel Using Convergence Confinement Approach. Geotech Geol Eng 39, 973–990 (2021). https://doi.org/10.1007/s10706-020-01539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-020-01539-4

Keywords

Navigation