General Analytical Solution for Laterally-Loaded Pile-Based Miche Model

Abstract

Piles subjected to lateral loading can create problems in soil-structure interaction. Several differing methods of analysis have been proposed to solve the problem of laterally loaded piles, resulting in the determination of pile bending and the bending moment as a function of depth below soil surface. These piles are widely used to support laterally loaded piles, such as bridge pillars, offshore platforms, communication towers and others. This study presents an analytical solution to Miche’s problem as a continuous function of depth: deflection and moment, as well as a dimensional plots to be used in projects involving piles subjected to laterally loading only including data concerning laterally loading test and pile geometry. A new formula is presented to calculate the pile head displacement as well as an equation to determine maximum moment for a generalized Miche model and further analysis. In addition, this paper proposes an equation for the determination of constant horizontal subgrade reaction \((n_{h})\) based on the CPT in-situ test and the geometric characteristics of the pile. Calibration of the analytical model showed good fit and conservative results regarding inclinometer data from an bored pile and good agreement with the literature results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. Ai ZY, Feng DL, Cheng YC (2013) Bem analysis of laterally loaded piles in multi-layered transversely isotropic soils. Eng Anal Bound Elem 37(7–8):1095–1106

    Article  Google Scholar 

  2. Albuquerque PJR, Carvalho Dd, Kassouf R, Fonte NL Jr (2019) Behavior of laterally top-loaded deep foundations in highly porous and collapsible soil. J Mater Civ Eng 31(2):04018373

    Article  Google Scholar 

  3. Alizadeh M, Davisson M (1970) Lateral load tests on piles-arkansas river project. J Soil Mech Found Div

  4. API R (2000) 2a-wsd. Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design 21

  5. Ayyub BM, McCuen RH (2015) Numerical analysis for engineers: methods and applications. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  6. Banerjee P, Davies T (1978) The behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils. Geotechnique 28(3):309–326

    Article  Google Scholar 

  7. Basu D, Salgado R, Prezzi M (2009) A continuum-based model for analysis of laterally loaded piles in layered soils. Geotechnique 59(2):127–140

    Article  Google Scholar 

  8. Budhu M, Davies TG (1988) Analysis of laterally loaded piles in soft clays. J Geotech Eng 114(1):21–39

    Article  Google Scholar 

  9. Erdélyi A (1955) Higher transcendental functions. In: Erdelyi A (ed) Higher transcendental functions, vol 1–3. McGraw-Hill, New York, pp 263–267

    Google Scholar 

  10. Froio D, Rizzi E (2017) Analytical solution for the elastic bending of beams lying on a linearly variable winkler support. Int J Mech Sci 128:680–694

    Article  Google Scholar 

  11. Garcia JR (2015) Análise experimental e numérica de radiers estaqueados executados em solo da região de campinas/sp. Universidade Estadual de Campinas, São Paulo, Brazil, Tese de Doutorado

  12. Gon FS (2011) Caracterização geotécnica através de ensaios de laboratórios de um solo de diabásio da região de campinas/sp. Universidade Estadual de Campinas, São Paulo, Brazil, Dissertação de mestrado

  13. Gupta BK, Basu D (2017) Analysis of laterally loaded short and long piles in multilayered heterogeneous elastic soil. Soils Found 57(1):92–110

    Article  Google Scholar 

  14. Hetenyi M (1946) Beams on elastic foundation, University of Michigan studies. Wiley, Hoboken

    Google Scholar 

  15. King AC, Billingham J, Otto SR (2003) Differential equations: linear, nonlinear, ordinary, partial. Cambridge University Press, Cambridge

    Google Scholar 

  16. Liang F, Li Y, Li L, Wang J (2014) Analytical solution for laterally loaded long piles based on Fourier–Laplace integral. Appl Math Model 38(21–22):5198–5216

    Article  Google Scholar 

  17. Matlock H (1970) Correlations for design of laterally loaded piles in soft clay. In: Offshore technology in civil engineering’s hall of fame papers from the early years, pp 77–94

  18. Matlock H, Reese LC (1961a) Foundation analysis of offshore pile supported structures. Conf Soil Mech Found Eng 2:91–97

    Google Scholar 

  19. Matlock H, Reese LC (1961b) Foundation analysis of offshore pile supported structures. Conf Soil Mech Found Eng 2:91–97

    Google Scholar 

  20. Miche R (1930) Investigation of piles subject to horizontal forces. Appl Qualy Walls J School Eng (4)

  21. Oliveira ECd, Tygel M (2005) Métodos matemáticos para engenharia. SBMAC, São Carlos

    Google Scholar 

  22. Phanikanth V, Choudhury D, Reddy GR (2010) Response of single pile under lateral loads in cohesionless soils. Electron J Geotech Eng 15(10):813–830

    Google Scholar 

  23. Phanikanth V, Choudhury D, Srinivas K (2013) Response of flexible piles under lateral loads. Indian Geotech J 43(1):76–82

    Article  Google Scholar 

  24. Poulos HG (1971a) Behavior of laterally loaded piles I. Single piles. J Soil Mech Found Div, pp 711–731

  25. Poulos HG (1971b) Behavior of laterally loaded piles pile groups. J Soil Mech Found Div, pp 733–751

  26. Reese L, Nyman K (1978) Field load test of instrumented drilled shafts at Islamorada, Florida. In: A report to girdler foundation and exploration corporation. Clearwater, Florida pp 1–150

  27. Reese LC, Matlock H (1960) Numerical analysis of laterally loaded piles. In: Proceedings, second structural division conference on electronic computation. American Society of Civil Engineers, pp 657–668

  28. Reese LC, Welch RC (1975) Lateral loading of deep foundations in stiff clay. J Geotech Geoenviron Eng 101(ASCE# 11456 Proceeding)

  29. Reese LC, Cox WR, Koop FD (1974) Analysis of laterally loaded piles in sand. In: Offshore technology in civil engineering hall of fame papers from the early years, pp 95–105

  30. Robertson PK (1990) Soil classification using the cone penetration test. Can Geotech J 27(1):151–158

    Article  Google Scholar 

  31. Robertson PK, Cabal K (2015) Guide to cone penetration testing for geotechnical engineering. Gregg Drilling and Testing, Signal Hill

    Google Scholar 

  32. Robin W (2014) On the procedure for the series solution of certain general-order homogeneous linear differential equations via the complex integration method. Nonlinear Anal Differ Equ 2:155–171

    Article  Google Scholar 

  33. Salgado R, Tehrani F, Prezzi M (2014) Analysis of laterally loaded pile groups in multilayered elastic soil. Comput Geotech 62:136–153

    Article  Google Scholar 

  34. Shen W, Teh C (2002) Analysis of laterally loaded pile groups using a variational approach. Geotechnique 52(3):201–208

    Article  Google Scholar 

  35. Sun K (1994) Laterally loaded piles in elastic media. J Geotech Eng 120(8):1324–1344

    Article  Google Scholar 

  36. Van Impe WF, Reese LC (2010) Single piles and pile groups under lateral loading. CRC Press, Boca Raton

    Google Scholar 

  37. Verruijt A, Kooijman A (1989) Laterally loaded piles in a layered elastic medium. Geotechnique 39(1):39–46

    Article  Google Scholar 

  38. Vos J (1982) The practical use of CPT in soil profiling. In: Proceedings, Second european symposium on penetration testing. ESOPT-2, Amsterdam, May 24–27, Vol 2, pp. 933–939

  39. Welch RC, Reese LC (1972) Laterally loaded behavior of drilled shafts. Center for Highway Research University of Texas, Austin, pp 65–89

    Google Scholar 

  40. Zhang L, Ernst H, Einstein HH (2000) Nonlinear analysis of laterally loadedrock-socketed shafts. J Geotech Geoenviron Eng 126(11):955–968

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo J. R. Albuquerque.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

By substituting Eq. (6) for Eq. (1), and developing the sum to \(n=4\) in the first part:

$$\begin{aligned}&\sum _{n=4}^{\infty }n(n-1)(n-2)(n-3) a_{n} z^{n-4}\nonumber \\&\quad +\beta ^5 \sum _{n=0}^{\infty } a_{n} z^{n+1}=0 \end{aligned}$$
(34)

Turning \(n \rightarrow n+4\) in the first installment of the equation and \(n \rightarrow n-1\) for the second installment, it has:

$$\begin{aligned}&\sum _{n=0}^{\infty }(n+1)(n+2)(n+3)(n+4) a_{n+4} z^{n}\nonumber \\&\quad +\beta ^5 \sum _{n=1}^{\infty } a_{n-1} z^{n}=0 \end{aligned}$$
(35)

Rearranging this, we have

$$\begin{aligned} \begin{aligned}&1\cdot 2\cdot 3\cdot 4 a_{4}+\sum _{n=1}^{\infty }[(n+1)(n+2)(n+3)(n+4)\\&\quad a_{n+4}+\beta ^5 a_{n-1}] z^{n} \end{aligned} \end{aligned}$$
(36)

So that \(a_{4}=a_{9}=\cdots =a_{5n+4}=0\), and \(a_{0}\), \(a_{1}\), \(a_{2 }\) and \(a_{3}\) are arbitrary, so the recurrence relationship is provided by

$$\begin{aligned} a_{n+4}=-\frac{\beta ^5 a_{n-1}}{(n+1)(n+2)(n+3)(n+4)}. \end{aligned}$$
(37)

Considering \(n=1, 2, 3, 4\), in Eq. (37), it has

$$\begin{aligned} a_{5}&=\frac{-\beta ^5 a_{0}}{2\cdot 3\cdot 4\cdot 5}, \\ a_{6}&=\frac{-\beta ^5 a_{1}}{3\cdot 4\cdot 5\cdot 6},\\ a_{7}&=\frac{-\beta ^5 a_{2}}{4\cdot 5\cdot 6\cdot 7},\\ a_{8}&=\frac{-\beta ^5 a_{3}}{5\cdot 6\cdot 7\cdot 8}.\\ \end{aligned}$$

Furthermore, for \(n=6,7,8,9\), in Eq. (37), and using the previous equations:

$$\begin{aligned} a_{10}&=\frac{\beta ^{10} a_{0}}{2\cdot 3\cdot 4\cdot 5\cdot 7\cdot 8\cdot 9\cdot 10} \\ a_{11}&=\frac{\beta ^{10} a_{1}}{3\cdot 4\cdot 5\cdot 6\cdot 8\cdot 9\cdot 10\cdot 11}\\ a_{12}&=\frac{\beta ^{10} a_{2}}{4\cdot 5\cdot 6\cdot 7\cdot 9\cdot 10\cdot 11\cdot 12}\\ a_{13}&=\frac{\beta ^{10} a_{3}}{5\cdot 6\cdot 7\cdot 8\cdot 10\cdot 11\cdot 12\cdot 13}\\ \end{aligned}$$

By applying the same process to infinite values of n, it has the behavior of a generalized hypergeometric function, as defined in Eq. (3). The general solution of Eq. (2) is achieved by substituting the terms \(a_{n}\) found in the Taylor series given by Eq. (3), therefore,

$$\begin{aligned} y[z]&= a_{0}\left( 1-\frac{(\beta ^5z^5)^1}{2\cdot 3\cdot 4\cdot 5}+\frac{(\beta ^5z^5)^2}{2\cdot 3\cdot 4\cdot 5\cdot 7\cdot 8\cdot 9\cdot 10}\right. \\ &\quad\left. -\,\frac{(\beta ^5 z^5)^3}{2\cdot 3\cdot 4\cdot 5\cdot 7\cdot 8\cdot 9\cdot 10\cdot 12\cdot 13\cdot 14\cdot 15}+\cdots \right) \\ &\quad + a_{1}z\beta \left( 1-\frac{(\beta ^5 z^5)^1}{3\cdot 4\cdot 5\cdot 6}+\frac{(\beta ^5 z^5)^2}{3\cdot 5\cdot 6\cdot 8\cdot 9\cdot 10\cdot 11}\right. \\ &\quad\left. -\,\frac{(\beta ^5 z^5)^3}{3\cdot 4\cdot 5\cdot 6\cdot 8\cdot 9\cdot 10\cdot 11\cdot 13\cdot 14\cdot 15\cdot 16}+\cdots \right) \\ &\quad a_{2} z^2 \beta ^2 \left( 1-\frac{(\beta ^5 z^5)^1}{4\cdot 5\cdot 6\cdot 7}+\frac{(\beta ^{5}z^5)^2 }{4\cdot 5\cdot 6\cdot 7\cdot 9\cdot 10\cdot 11\cdot 12}\right. \\ &\quad\left. -\,\frac{(\beta ^{5}z^5)^3}{4\cdot 5\cdot 6\cdot 7\cdot 9\cdot 10\cdot 11\cdot 12\cdot 14\cdot 15\cdot 16\cdot 17}+\cdots \right) \\ &\quad a_{3}z^3\beta ^3 \left( 1-\frac{(\beta ^5 z^5)^1}{5\cdot 6\cdot 7\cdot 8} +\frac{(\beta ^5z^5)^2}{5\cdot 6\cdot 7\cdot 8\cdot 10\cdot 11\cdot 12\cdot 13}\right. \\ &\quad\left. -\,\frac{(\beta ^{5}z^5)^3}{5\cdot 6\cdot 7\cdot 8\cdot 10\cdot 11\cdot 12\cdot 13\cdot 15\cdot 16\cdot 17\cdot 18}+\cdots \right) \end{aligned}$$
(38)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosendo, D.C., Albuquerque, P.J.R. General Analytical Solution for Laterally-Loaded Pile-Based Miche Model. Geotech Geol Eng (2020). https://doi.org/10.1007/s10706-020-01520-1

Download citation

Keywords

  • Analytical model
  • Laterally-loaded pile
  • Full-scale tests
  • Hypergeometric functions