Skip to main content

Detailed Description of the Geomechanical Interaction Between a Cohesive Hydraulic Fracture and a Natural Fracture in Saturated Poroelastic Media

Abstract

Hydraulic fracturing is an important technique in unconventional petroleum reservoir development. In this paper, a numerical algorithm is used to study the interaction of a propagating hydraulic fracture with a natural fracture in an infinite saturated porous domain. It is shown that this model can appropriately simulate two possibilities which might occur during the hydraulic fracturing of naturally fractured reservoirs. The variations of bottom-hole pressure and crack mouth opening displacement through time are completely described. It is shown that how the coupling between fluid pressure and discontinuities deformation influences the variation of bottom-hole pressure as a measurable parameter through time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Aguilera R (1998) Geological aspects of naturally fractured reservoirs. Lead Age 17(12):1667–1670

    Google Scholar 

  2. Barani OR, Khoei AR (2014) 3D modeling of cohesive crack growth in partially saturated porous media: a parametric study. Eng Fract Mech 124–125:272–286

    Article  Google Scholar 

  3. Barani OR, Khoei AR, Mofid M (2011) Modeling of cohesive crack growth in partially saturated porous media: a study on the permeability of cohesive fracture. Int J Fract 167:15–31

    Article  Google Scholar 

  4. Barani OR, Majidaie S, Mosallanejad M (2016) Numerical modeling of water pressure in propagating concrete cracks. J Eng Mech (ASCE) 142(4):04016011

    Article  Google Scholar 

  5. Bazant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton

    Google Scholar 

  6. Blair SC, Thorpe RK, Heuze FE, Shaffer RJ (1989) Laboratory observations of the effect of geological discontinuities on hydro-fracture propagation. In: Proceedings of the 30th U.S. symposium on rock mechanics, Morgantown, pp 433–450.

  7. Blanton TL (1982) An experimental study of interaction between hydraulically induced and pre-existing fractures. SPE 10847, presented at the SPE/DOE unconventional gas recovery symposium, Pittsburgh, pp 16–18.

  8. Chen Z (2012) Finite element modelling of viscosity-dominated hydraulic fractures. J Petrol Sci Eng 88–89:136–144

    Article  Google Scholar 

  9. Cooke M, Underwood CA (2001) Fracture termination and step over at bedding interfaces due to frictional slip and interface opening. J Struct Geol 23(2–3):223–238

    Article  Google Scholar 

  10. Dahi-Taleghani A, Olson JE (2011) Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. SPE J 16(3):575–581

    Article  Google Scholar 

  11. Dong CY, de Pater CJ (2001) Numerical implementation of displacement discontinuity method and its application in hydraulic fracturing. Comput Methods Appl Mech Eng 191:745–760

    Article  Google Scholar 

  12. Dyskin AV, Caballero A (2009) Orthogonal crack approaching an interface. Eng Fract Mech 76:2476–2485

    Article  Google Scholar 

  13. Dyskin AV, Estrin Y, Kanel-Belov AJ, Pasternak E (2001) Toughening by fragmentation: how topology helps. Adv Eng Mater 3(11):885–888

    Article  Google Scholar 

  14. Espinosa HD, Zavattieri PD (2003) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: theory and numerical implementation. Mech Mater 35(3–6):333–364

    Article  Google Scholar 

  15. Feng Y, Gray KE (2017) Parameters controlling pressure and fracture behaviors in field injectivity tests: a numerical investigation using coupled flow and geomechanics model. Comput Geotech 87:49–61

    Article  Google Scholar 

  16. Gu H, Weng X, Lund J, Mack M, Ganguly U, Suarez-Rivera R (2011) Schlumberger: hydraulic fracture crossing natural fracture at non-orthogonal angles, a criterion, its validation and applications. SPE 139984, SPE Hydraulic fracturing technology conference and exhibition, Woodlands, Texas, USA, pp 24–26.

  17. Haddad M, Sepehrnoori K (2015) Simulation of hydraulic fracturing in quasi-brittle shale formations using characterized cohesive layer: stimulation controlling factors. J Unconv Oil Gas Resour 9:65–83

    Article  Google Scholar 

  18. Khoei AR, Barani OR, Mofid M (2011) Modeling of dynamic cohesive fracture propagation in porous saturated media. Int J Numer Anal Methods Geomech 35:1160–1184

    Article  Google Scholar 

  19. Khoei AR, Hirmand M, Vahab M, Bazargan M (2015) An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: numerical and experimental investigations. Int J Numer Meth Eng 104(6):439–468

    Article  Google Scholar 

  20. Khoei AR, Vahab M, Hirmand M (2017) An enriched–FEM technique for numerical simulation of interacting discontinuities in naturally fractured porous media. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2017.11.016

    Article  Google Scholar 

  21. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, New York

    Google Scholar 

  22. Li J (2000) Debonding of the interface as “crack arrestor”. Int J Fract 105:57–79

    Article  Google Scholar 

  23. Mohammadnejad T, Khoei AR (2013) An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem Anal Des 73:77–95

    Article  Google Scholar 

  24. Nelson RA (2001) Geologic analysis of naturally fractured reservoirs, 2nd edn. Gulf Professional Publishing, Woburn

    Google Scholar 

  25. Peirce A, Detournay E (2008) An implicit level set method for modeling hydraulically driven fractures. Comput Methods Appl Mech Eng 197(33–40):2858–2885

    Article  Google Scholar 

  26. Rahman MM, Rahman SS (2013a) Fully coupled finite-element based numerical model for investigation of interaction between an induced and a preexisting fracture in naturally fractured poro-elastic reservoirs: fracture diversion, arrest, and breakout. Int J Geomech 13(4):390–401

    Article  Google Scholar 

  27. Rahman MM, Rahman SS (2013b) Studies of hydraulic fracture-propagation behavior in presence of natural fractures: fully coupled fractured-reservoir modeling in poroelastic environments. Int J Geomech 13(6):809–826

    Article  Google Scholar 

  28. Renshaw CE, Pollard DD (1995) An experimentally verified criterion for propagation across unbonded frictional interfaces in brittle, linear elastic materials. Int J Rock Mech Min Sci 32(3):237–249

    Article  Google Scholar 

  29. Reugelsdijk LJL, Beugelsdijk LJL, de Pater CJ, Sato K (2000) Experimental hydraulic fracture propagation in multi-fractured medium. SPE 59419, presented at the SPE Asia Pacific conference on integrated modeling, Yokohoma, pp 25–26.

  30. Sarris E, Papanastasiou P (2012) Modeling of hydraulic fracturing in a poroelastic cohesive formation. Int J Geomech 12(2):160–167

    Article  Google Scholar 

  31. Schrefler BA, Secchi S, Simoni L (2006) On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput Methods Appl Mech Eng 195:444–461

    Article  Google Scholar 

  32. Secchi S, Simoni L, Schrefler BA (2007) Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials. Int J Numer Anal Methods Geomech 31:331–345

    Article  Google Scholar 

  33. Segura JM, Carol I (2004) On zero-thickness elements for diffusion problems. Int J Numer Anal Methods Geomech 28:947–962

    Article  Google Scholar 

  34. Sesetty V, Ghassemi A (2012) Modeling and analysis of stimulation for fracture network generation. In: Proceedings of 37th Stanford Geothermal workshop on geothermal reservoir engineering, Stanford University, California

  35. Shi F, Wang X, Liu C, Liu H, Wu H (2017) An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures. Eng Fract Mech 173:64–90

    Article  Google Scholar 

  36. Wang X, Shi F, Liu C, Lu D, Liu H, Wu H (2018) Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures. J Nat Gas Sci Eng 50:309–324

    Article  Google Scholar 

  37. Warpinski NR, Teufel LW (1987) Influence of geological discontinuities on hydraulic fracture propagation. J Petrol Technol 39(2):209–220

    Article  Google Scholar 

  38. Weertman J (1980) The stopping of a rising, liquid-filled crack in the earth's crust by a freely slipping horizontal joint. Geophys Res 85B:967–976

    Article  Google Scholar 

  39. Zhang Z, Ghassemi A (2011) Simulation of hydraulic fracture propagation near a natural fracture using virtual multidimensional internal bonds. Int J Numer Anal Methods Geomech 35:480–495

    Article  Google Scholar 

  40. Zhang X, Jeffrey RG (2006) The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures. Int J Geophys 16:1454–1465

    Article  Google Scholar 

  41. Zhao H, Chen M (2010) Extending behavior of hydraulic fracture when reaching formation interface. J Petrol Sci Eng 74:26–30

    Article  Google Scholar 

  42. Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Omid Reza Barani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barani, O.R., Haghighat, N.G. & Salmani, P. Detailed Description of the Geomechanical Interaction Between a Cohesive Hydraulic Fracture and a Natural Fracture in Saturated Poroelastic Media. Geotech Geol Eng 38, 1689–1705 (2020). https://doi.org/10.1007/s10706-019-01124-4

Download citation

Keywords

  • Hydraulic fracturing
  • Naturally fractured reservoir
  • Poroelastic
  • Modeling
  • Cohesive fracture