Skip to main content
Log in

Evaluation of the Compressibility and Compressive Strength of a Compacted Cement Treated Laterite Soil for Road Application

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

This study presents experimental results of a laboratory investigation carried out on the compressibility, physical properties, compressive strength and microstructure of a cement–lateritic soil mixing. The investigation was conducted on a compacted fine grained lateritic soil, both untreated and treated with CEMII/BM 32.5 N cement (up to 9% by weight of dry soil), in order to evaluate the effect of cement content and curing time on the behavior of lateritic soil–cement mixtures compacted at modified proctor energy for various dry densities and molding water contents. Preliminary tests on cement amended soil showed improved physical properties. The unconfined compression tests show an increase of the unconfined compressive strength, reflecting an improvement of mechanical strength of the treated lateritic soil. The incremental oedometer tests showed that yield stress (σ′y) increased with both cement content and curing time, but decreased with increased molding water content. Reduction in modified compression index (C) and modified recompression index (C) with increasing cement content and curing time was recorded for all tested water contents, the coefficient of consolidation (Cv) is increased for effective vertical stresses smaller than the yield stress. The results also show that it would be desirable that the soil sample is prepared at the dry side of optimum (ωDRY) when the optimum moisture content is not reached on the site. These positive impacts are mainly related to the fact that cement addition gives way to the formation of ettringite, calcite, portlandite and calcium silicate hydrates (afwillite and tobermorite) which derived principally from cement hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Amoudi OSB (2002) Characterization and chemical stabilization of Al-Qurayyah sabkha soil. J Mater Civ Eng 14(6):478–484

    Article  Google Scholar 

  • Al-Amoudi OSB, Khan K, Al-Kahtani NS (2010) Stabilization of a Saudi calcareous marl soil. Constr Build Mater 24(10):1848–1854

    Article  Google Scholar 

  • Bagarre E (1990) Utilisation des graveleux latéritiques en technique routière. Rev. ISTED – CEBTP, 148

  • CEBTP (1984) Guide pratique de dimensionnement des chaussées pour les pays tropicaux p 157

  • Chew SH, Kamruzzaman AHM, Lee FH (2004) Physicochemical and engineering behavior of cement treated clays. J Geotech Geoenviron Eng 130(7):696–706

    Article  Google Scholar 

  • Eberemu AO (2011) Consolidation properties of compacted lateritic soil treated with rice husk ash. J Geomat (GM) 1(3):70–78

    Article  Google Scholar 

  • Feng TW, Lee JY, Lee YJ (2001) Consolidation behavior of a soft mud treated with small cement content. Eng Geol 59(3):327–335

    Article  Google Scholar 

  • Gidigasu M (ed) (2012) Laterite soil engineering: pedogenesis and engineering principles, vol 9. Elsevier, Amsterdam

    Google Scholar 

  • GTR (2000) Guide des Terrassements Routiers, réalisation de remblais et des couches de formes, fascicules I et II, GTR SETRA-LCPC 2ème édition Juillet 2000, p 211

  • Holtz RD, Kovacs WD (1981) Introduction à la géotechnique. Editions de l’Ecole Polytechnique de Montréal

  • Hwang J (2006) Effects of cement treatment on the one-dimensional consolidation behavior of a highly organic soil. ProQuest p 458

  • Kamruzzaman AH, Chew SH, Lee FH (2009) Structuration and destructuration behavior of cement-treated Singapore marine clay. J Geotech Geoenviron Eng ASCE 135(4):573–589

    Article  Google Scholar 

  • Kazemian S, Huat BB (2009) Compressibility characteristics of fibrous tropical peat reinforced with cement column. Electron J Geotech Eng 14:1–13

    Google Scholar 

  • Lemaire K, Deneele D, Bonnet S, Legret M (2013) Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt. Eng Geol 166:255–261

    Article  Google Scholar 

  • Locat J, Berube MA, Choquette M (1990) Laboratory investigations on the lime stabilization of sensitive clays: shear strength development. Can Geotech J 27(3):294–304

    Article  Google Scholar 

  • Lorenzo GA, Bergado DT (2004) Fundamental parameters of cement-admixed clay-new approach. J Geotech Geoenviron Eng 130(10):1042–1050

    Article  Google Scholar 

  • Magnan JP, Mieussens C, Soyez B, Vautrain J (1985) Essais oedométriques. Laboratoire central des Ponts et Chaussées. Paris. Méthode d’essai LPC, 13, p 83

  • Mengue E (2015) Évaluation du comportement mécanique d’un sol latéritique traité au ciment pour des applications routières (Doctoral dissertation, Lille 1)

  • Mengue E, Mroueh H, Lancelot L, Medjo Eko R (2015) One-dimensional consolidation behavior of cement treated lateritic soil. Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development. ISBN 978-0-7277-6067-8

  • Mengue E, Mroueh H, Lancelot L, Eko RM (2017) Mechanical improvement of a fine-grained lateritic soil treated with cement for use in road construction. J Mater Civ Eng 29(11):04017206

    Article  Google Scholar 

  • Millogo Y, Hajjaji M, Ouedraogo R, Gomina M (2008) Cement-lateritic gravels mixtures: microstructure and strength characteristics. Constr Build Mater 22(10):2078–2086

    Article  Google Scholar 

  • Mrabent B, Amel S, Hachichi A, Bengraal L, Fleureau JM (2011) Influence du ciment sur le gonflement et la microstructure d’une argile naturelle d’Algérie. XXIXe Rencontres Universitaires de Génie Civil, Tlemcen, 29 au 31 Mai 2011

  • NF EN 13286-41 (2003) Mélanges traités et mélanges non traités aux liants hydrauliques - Partie 41: méthode d’essai pour la détermination de la résistance à la compression des mélanges traités aux liants hydrauliques. Juillet 2003

  • NF P94-051 (1993) Sols : reconnaissance et essais - Détermination des limites d’Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau. Mars 1993

  • NF P94-090-1 (1993) Sols: Reconnaissance et Essais - Essai œdométrique - Partie 1: Essai de compressibilité sur matériaux fins quasi saturés avec chargement par paliers. Décembre 1993

  • NF P94-068 (1998) Sols: reconnaissance et essais - Mesure de la capacité d’adsorption de bleu de méthylène d’un sol ou d’un matériau rocheux - Détermination de la valeur de bleu de méthylène d’un sol ou d’un matériau rocheux par l’essai à la tache. Octobre (1998)

  • NF P94-093 (1999) Sols : reconnaissance et essais - Détermination des références de compactage d’un matériau - Essai Proctor Normal - Essai Proctor modifié - Sols: reconnaissance et essais - Détermination des références de compactage d’un matériau - Essai Proctor Normal - Essai Proctor modifié. Octobre 1999

  • Osinubi KJ (1998) Permeability of lime-treated lateritic soil. J Transp Eng 124(5):465–469

    Article  Google Scholar 

  • Oyediran IA, Kalejaiye M (2011) Effect of increasing cement content on strength and compaction parameters of some lateritic soils from southwestern Nigeria. Electron J Geotech Eng 16:1501–1514

    Google Scholar 

  • Sarkar G, Islam MDR, Alamgir M, Rokonuzzaman MD (2012) Study on the geotechnical properties of cement based composite fine-grained soil. Int J Adv Struct Geotech Eng 1(2):42–49

    Google Scholar 

  • Sikali et F, Mir-Emarati DJ (1987) Utilisation des latérites en technique routière au Cameroun. In Séminaire régional sur les latérites: sols, matériaux, minerais pp 277–288

  • Sobhan K, Ramirez JC, Reddy DV (2012) Cement stabilization of highly organic subgrade soils to control secondary compression settlement. Transp Res Rec J Transp Res Board 2310(1):103–112

    Article  Google Scholar 

  • Solanski CH, Desai MD (2008) Preconsolidation pressure from soil index and plasticity properties. In: The 12th international conference of international association for computer methods and advances in geomechanics (IACMAG) 1–6 October, Goa, India

  • Tremblay H, Leroueil S, Locat J (2001) Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement. Can Geotech J 38(3):567–579

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the MUNDUS ACP 2 Project for funding this research. Our thanks also go to the place of the host laboratory, the LGCGE where almost all of these works are carried.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Mengue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengue, E., Mroueh, H., Lancelot, L. et al. Evaluation of the Compressibility and Compressive Strength of a Compacted Cement Treated Laterite Soil for Road Application. Geotech Geol Eng 36, 3831–3856 (2018). https://doi.org/10.1007/s10706-018-0576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-018-0576-x

Keywords

Navigation