Active Earth Pressure with Linear and Nonlinear Failure Criteria

Original paper
  • 65 Downloads

Abstract

Most conventional calculation methods of active earth pressure behind a retaining wall are mainly based on the linear Mohr–Coulomb failure criterion. However, numerous experimental data indicate that various kinds of soils obey the nonlinear failure criterion. Assuming a Coulomb failure plane, an analytical expression following linear and nonlinear failure criteria using the limit equilibrium method is presented in this paper for estimating active earth pressure with a translating retaining wall. Meanwhile, both the adhesion and friction angle of the wall as well as cohesion and internal friction angle of the soil backfill are considered. Special cases show that the derived formula for the linear failure criterion can be reduced to expressions proposed by previous literature under different field conditions of soil backfill. Numerical studies show that the results of the presented method are consistent with previous solutions, which indicates that the method of this paper is feasible for evaluating active earth pressures. At last, the effects of the the nonlinear failure criterion on active earth pressure are further examined.

Keywords

Linear and nonlinear failure criteria Retaining wall Active earth pressure Limit equilibrium method 

Notes

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 41172282). The supports are greatly appreciated.

References

  1. Agar JG, Morgenstern NR, Scott JD (1987) Shear strength and stress–strain behavior of Athabasca oil sand at elevated temperatures and pressures. Can Geotech J 24:1–10. doi: 10.1139/t87-001 CrossRefGoogle Scholar
  2. Baker R (2004) Nonlinear Mohr envelopes based on triaxial data. J Geotech Geoenviron Eng ASCE 130(5):498–506. doi: 10.1061/(ASCE)1090-0241(2004) CrossRefGoogle Scholar
  3. Chen WF (1975) Limit analysis and soil plasticity. Elsevier Science, AmsterdamGoogle Scholar
  4. Chen WF, Liu XL (1990) Limit analysis in soil mechanics. Elsevier, New YorkGoogle Scholar
  5. Coulomb CA (1776) Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs à l’architecture. Mém Math Phys Présentés Acad R Sci Divers Savants 7:343–382 (in French) Google Scholar
  6. Das BM (2008) Fundamentals of geotechnical engineering, 3rd edn. Cengage Learning, StamfordGoogle Scholar
  7. Drescher A, Christopoulos C (1988) Limit analysis slope stability with nonlinear yield condition. Int J Numer Anal Meth Geomech 12:341–345. doi: 10.1002/nag.1610120307 CrossRefGoogle Scholar
  8. Dubrova GA (1963) Interaction of soil and structures. Izd. Rechnoy Transport, MoscowGoogle Scholar
  9. Fang YS, Cheng FP, Chen RT et al (1993) Earth pressures under general wall movements. Geotech Eng 24(2):113–131Google Scholar
  10. Fang YS, Chen TJ, Wu BF (1994) Passive earth pressures with various wall movements. J Geotech Eng 120(8):1307–1323CrossRefGoogle Scholar
  11. Hanna A, Khoury IA (2005) Passive earth pressure of over consolidated cohesionless bakfill. J Geotech Geoenviron Eng ASCE 131(8):978–986. doi: 10.1061/(ASCE)1090-0241(2005) CrossRefGoogle Scholar
  12. Harr ME (1977) Mechanics of particulate media: a probabilistic approach. McGraw-Hill International Book Company, New YorkGoogle Scholar
  13. Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. ASCE J Geotech Eng Div 106:1013–1035Google Scholar
  14. Jiang JC, Baker R, Yamagami T (2003) The effect of strength envelope nonlinearity on slope stability computations. Can Geotech J 40(2):308–325CrossRefGoogle Scholar
  15. Kline M (1977) Chapter 13: differentials and the law of the mean. In: Calculus: an intuitive and physical approach. WileyGoogle Scholar
  16. Kumar J (2001) Seismic passive earth pressure coefficients for sands. Can Geotech J 38(4):876–881. doi: 10.1139/t01-004 CrossRefGoogle Scholar
  17. Lade PV (1977) Elasto-plastic stress-strain theory for cohesionless soil with curved yield surface. Int J Solids Struct 13:1019–1035. doi: 10.1016/0020-7683(77)90073-7 CrossRefGoogle Scholar
  18. Lambe TW, Whitman RV (1979) Soil mechanics, SI version. Wiley, New YorkGoogle Scholar
  19. Lancellotta R (2002) Analytical solution of passive earth pressure. Géotechnique 52(8):617–619. doi: 10.1680/geot.2002.52.8.617 CrossRefGoogle Scholar
  20. Paik KH, Salgado R (2003) Estimation of active earth pressu3re against rigid retaining walls considering arching effects. Géotechnique 53(7):643–653. doi: 10.1680/geot.2003.53.7.643 CrossRefGoogle Scholar
  21. Rankine WJM (1857) On the stability of loose earth. Philos Trans R Soc Lond 147:9–27CrossRefGoogle Scholar
  22. Santarelli FJ (1987) Theoretical and experimental investigation of the stability of the axisymmetric wellhole. University of London, LondonGoogle Scholar
  23. Shukla SK (2011) Dynamic active thrust from cφsoil backfill. Soil Dyn Earthq Eng 31(3):526–529. doi: 10.1016/j.soildyn.2010.10.001 CrossRefGoogle Scholar
  24. Soubra AH, Macuh B (2002) Active and passive earth pressure coefficients by a kinematical approach. Proc Inst Civ Eng Geotech Eng 55(2):119–131. doi: 10.1680/geng.2002.155.2.119 CrossRefGoogle Scholar
  25. Sun YJ, Song EX (2016) Active earth pressure analysis based on normal stress distribution function along failure surface in soil obeying nonlinear failure criterion. Acta Geotech 11:255–268CrossRefGoogle Scholar
  26. Terzaghi K (1932) Record earth pressure testing machine. Eng News Record 109(29):365–369Google Scholar
  27. Terzaghi K (1934) Large retaining wall tests: pressure of saturated sand. Eng News Record 112(22):259–262Google Scholar
  28. Terzaghi K (1936) Stress distribution in dry and in saturated sand above a yielding trap-door. In: Proceedings of international conference on soil mechanics, vol 1, Cambridge, pp 307–311Google Scholar
  29. Tu BX, Jia JQ (2014) Active earth pressure from cφ soil backfill. Proc Inst Civ Eng Geotech Eng 167(3):270–280. doi: 10.1680/geng.12.00008 CrossRefGoogle Scholar
  30. Yang XL (2002) Limit analysis method and its application to geotechnical engineering with linear and nonlinear failure criteria. Ph.D. Thesis, Central South University, ChinaGoogle Scholar
  31. Yang XL (2007) Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion. Theoret Appl Fract Mech 47(1):46–56. doi: 10.1016/j.tafmec.2006.10.003 CrossRefGoogle Scholar
  32. Yang XL, Yin JH (2006) Estimation of seismic passive earth pressures with nonlinear failure criterion. Eng Struct 28(3):342–348. doi: 10.1016/j.engstruct.2005.08.007 CrossRefGoogle Scholar
  33. Zhang XJ, Chen WF (1987) Stability analysis of slopes with general nonlinear failure criterion. Int J Numer Anal Methods Geomech 11:33–50. doi: 10.1002/nag.1610110104 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of civil engineering, Faculty of EngineeringChina University of GeosciencesWuhanChina

Personalised recommendations