Skip to main content

Modeling Bromide Transport in Undisturbed Soil Columns with the Continuous Time Random Walk

Abstract

Nowadays, mathematical models are commonly used as efficient tools in solute transport studies and management in porous media. In this paper, we evaluated the continuous time random walk (CTRW) theory for its capability to characterize bromide transport in one-dimensional saturated undisturbed clay loam and sandy loam soil columns (10 cm in diameter and 40 cm long). The transport process was also simulated by using the advection–dispersion equation (ADE) for comparison. The values of CTRW parameter, β, for clay loam and sandy loam soil columns were derived at 1.71 and 1.73, respectively. This indicated that the bromide transport behavior within the clay loam and sandy loam soil columns was anomalous transport or non-Fickian transport and CTRW model was more suitable for simulation of bromide transport through undisturbed clay loam and sandy soil columns compared to ADE model with Fickian diffusion law basis. The graphical and statistical analysis confirmed the efficiency of CTRW model for simulation of bromide transport.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Benson DA (1998) The fractional advection–dispersion equation: development and application. Dissertation, University of Nevada Reno

  • Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection–dispersion equation. Water Resour Res 36(6):1403–1412

    Article  Google Scholar 

  • Berkowitz B, Scher H (1995) On characterization of anomalous dispersion in porous and fractured media. Water Resour Res 31(6):1461–1466

    Article  Google Scholar 

  • Berkowitz B, Scher H (1997) Anomalous transport in random fracture networks. Phys Rev Let 79(20):4038–4041

    Article  Google Scholar 

  • Berkowitz B, Scher H (1998) Theory of anomalous chemical transport in fracture networks. Phys Rev E 57(5):5858–5869

    Article  Google Scholar 

  • Berkowitz B, Scher H (2001) The role of probabilistic approaches to transport theory in heterogeneous media. Trans Porous Media 42:241–263

    Article  Google Scholar 

  • Berkowitz B, Scher H (2008) Exploring the nature of non-Fickian transport in laboratory experiments. Adv Water Resour 32(5):750–755

    Article  Google Scholar 

  • Berkowitz B, Scher H, Silliman SE (2000) Anomalous transport in laboratoryscale, heterogeneous porous media. Water Resour Res 36(1):149–158

    Article  Google Scholar 

  • Berkowitz B, Kosakowski G, Margolin G, Scher H (2001) Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media. Ground Water 39(4):593–604

    Article  Google Scholar 

  • Berkowitz B, Klafter J, Metzler R, Scher H (2002) Physical pictures of transport in heterogeneous media: advection–dispersion, random-walk, and fractional derivative formulations. Water Resour Res 38:1191. doi:10.1029/R001030

    Article  Google Scholar 

  • Berkowitz B, Emmanuel S, Scher H (2008) Non-Fickian transport and multiplerate mass transfer in porous media. Water Resour Res 44:W03402. doi:10.1029/2007WR005906

    Article  Google Scholar 

  • Bromly M, Hinz C (2004) Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour Res 40:W07402. doi:10.1029/2003WR002579

    Article  Google Scholar 

  • Cherubini C (2008) A modeling approach for the study of contamination in a fractured aquifer. Geotech Geol Eng 26(5):519–533

    Article  Google Scholar 

  • Cortis A, Berkowitz B (2004) Anomalous transport in ‘‘classical” soil and sand columns. Soil Sci Soc Am J 68:1539–1548

    Article  Google Scholar 

  • Cortis A, Berkowitz B (2005) Computing “anomalous” contaminant transport in porous media: the CTRW MATLAB toolbox. Ground Water 43(6):947–950

    Article  Google Scholar 

  • Cortis A, Chen Y, Scher H, Berkowitz B (2004) Quantitative characterization of pore-scale disorder effects on transport in “homogeneous” granular media. Phys Rev E 70:041108. doi:10.1103/PhysRevE.70.041108

    Article  Google Scholar 

  • Cortis A, Harter T, Hou L, Atwill ER, Packman AI, Green PG (2006) Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water Resour Res 42:W12S13. doi:10.1029/2006WR004897

    Google Scholar 

  • Dagan G (1988) Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resour Res 24(9):1491–1500

    Article  Google Scholar 

  • Dagan G (1989) Flow and Transport in Porous Formations. Springer, Berlin. ISBN 978-3-540-51098-7

    Book  Google Scholar 

  • Dai Z, Wolfsberg A, Lu Z, Ritzi R (2007) Representing aquifer architecture in macrodispersivity models with an analytical solution of the transition probability matrix. Geophys Res Lett 34:L20406. doi:10.1029/2007GL031608

    Article  Google Scholar 

  • Dentz M, Cortis A, Scher H, Berkowitz B (2004) Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv Water Resour 27(2):155–173

    Article  Google Scholar 

  • Ersahin S, Papendick RI, Smith JL, Keller CK, Manoranjan VS (2002) Macropore transport of bromide as influenced by soil structure differences. Geoderma 108:207–223

    Article  Google Scholar 

  • Estabragh AR, Pereshkafti MRS, Javadi AA (2013) Comparison between analytical and numerical methods in evaluating the pollution transport in porous media. Geotech Geol Eng 31(1):93–101

    Article  Google Scholar 

  • Estabragh AR, Pereshkafti MRS, Javadi AA (2014) Numerical analysis of advection-dominated contaminant transport in saturated porous media. Eur J Environ Civ En 18(5):536–549

    Article  Google Scholar 

  • Gao G, Zhan H, Feng S, Huang G, Mao X (2009) Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column. J Contam Hydrol 377:391–404

    Article  Google Scholar 

  • Gelhar LW (1993) Stochastic Subsurface Hydrology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field scale disppersion in aquifers. Water Resour Res 28(7):1955–1974

    Article  Google Scholar 

  • Khan AUH, Jury WA (1990) Alaboratory test of the dispersion scale effect. J Contam Hydrol 5:119–132

    Article  Google Scholar 

  • Lee J, Horton R, Noborio K, Jaynes DB (2001) Characterization of preferential flow in undisturbed structured soil columns using a vertical TDR probe. J Contam Hydrol 51:131–144

    Article  Google Scholar 

  • Levy M, Berkowitz B (2003) Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J Contam Hydrol 64:203–226

    Article  Google Scholar 

  • Li N, Ren L (2009) Application of continuous time random walk theory to non-equilibrium transport in soil. J Contam Hydrol 108(3):134–151

    Article  Google Scholar 

  • Montroll EW, Scher H (1973) Randomwalks on lattices, IV, Continuous-time walks and influence of adsorbing boundaries. J Stat Phys 9:101–135

    Article  Google Scholar 

  • Montroll EW, Weiss GH (1965) Random walks on lattices. II. J Math Phys 6:167–183

    Article  Google Scholar 

  • Mörters P, Peres Y (2010) Brownian motion, vol 30. Cambridge University Press, Cambridge, p 357

    Book  Google Scholar 

  • Pachepsky Y, Benon D, Rawls W (2000) Simulating scale-dependent solute transport in soils with the fractional advective–dispersive equation. Soil Sci Soc Am J 64(3):1234–1243

    Article  Google Scholar 

  • Pickens JF, Grisak GE (1981a) Scale-dependent dispersion in a stratified granular aquifer. Water Resour Res 17(4):1191–1211

    Article  Google Scholar 

  • Pickens JF, Grisak GE (1981b) Modeling of scale-dependent dispersion in hydrogeologic systems. Water Resour Res 17(6):1701–1711

    Article  Google Scholar 

  • Scher H, Lax M (1973) Stochastic transport in a disordered solid: I. Theory. Phys Rev B 7(10):4491–4502

    Article  Google Scholar 

  • Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12(6):2455–2477

    Article  Google Scholar 

  • Soltanian MR, Ritzi RW, Dai Z, Huang CC, Dominic D (2014) Transport of kinetically sorbing solutes in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales. Stochastic Environ Res Risk Asses. 29(3):709–726

    Article  Google Scholar 

  • Soltanian MR, Ritzi RW, Dai Z, Huang CC (2015a) Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: the Lagrangian approach. Chemosphere 122:235–244

    Article  Google Scholar 

  • Soltanian MR, Ritzi RW, Huang CC, Dai Z (2015b) Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 2. Particle displacement variance. Water Resources Research 51(3):1601–1618

    Article  Google Scholar 

  • Sudicky EA, Cherry JA (1979) Field observations of tracer dispersion under natural flow conditions in an unconfined sandy aquifer. Water Pollut Res Can 14:1–17

    Google Scholar 

  • Toride N, Leij F, van Genuchten MTh (1999) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.1, Research Rep. 137. US Salinity Lab, Riverside, CA, USA

  • Xiong Y, Huang G, Huang Q (2006) Modeling solute transport in one-dimensional homogeneous and heterogeneous soil columns with continuous time random walk. J Contam Hydrol 86:163–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Shahmohammadi-Kalalagh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahmohammadi-Kalalagh, S., Beyrami, H. Modeling Bromide Transport in Undisturbed Soil Columns with the Continuous Time Random Walk. Geotech Geol Eng 33, 1511–1518 (2015). https://doi.org/10.1007/s10706-015-9917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-015-9917-1

Keywords

  • ADE
  • CTRW
  • CXTFIT
  • Fickian
  • Model
  • Non-Fickian