Skip to main content
Log in

A Hypoplasticity-Based Method for Estimating Thaw Consolidation of Frozen Sand

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Thaw consolidation of frozen ground is one of the main causes for settlement of foundations in cold regions engineering. This paper firstly derived an improved von Wolffersdorff hypoplastic model by incorporating an internal state variable S to represent the cohesive forces of frozen soils. Then the principle of effective stress was enhanced by introducing a new expression of the Bishop Factor based on the water retention curves of fine sand. As for the migration of water during thaw consolidation, a modified Richards’ equation was used for porous fluid flow in a saturated or partially saturated soil. Coupled with the heat transfer equation taking into account the ice-water phase change, a numerical method was proposed for analyzing the thermo-hydro-mechanical processes during thaw consolidation of frozen ground. It was numerically implemented in the FISH language on the FLAC platform and was verified by thaw consolidation tests on frozen fine sand samples in laboratory. Results indicate that the calculated results agree in general with test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andersland OB, Ladanyi B (1994) An introduction to frozen ground engineering. Chapman and Hall, New York

    Book  Google Scholar 

  • Bauer E (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Found 36(1):13–26

    Article  Google Scholar 

  • Bauer E, Wu W (1995) A hypoplastic constitutive model for cohesive powders. Powder Technol 85:1–9. doi:10.1016/0032-5910(95)02999-I

    Article  Google Scholar 

  • Bishop AW (1959) The principle of effective stress. Teknisk Ukeblad 106:859–863

    Google Scholar 

  • Bourbonnais J, Ladanyi B (1985) The mechanical behavior of frozen sand down to cryogenic temperatures. In: Proceedings, 4th International Symposium on Ground Freezing, Sapporo, Japan, vol 1. pp 235–244

  • Chen XB, Liu JK, Liu HX et al (2006) Frost action of soil and foundation engineering. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Cornforth D (1973) Prediction of drained strength of sands from relative density measurements. ASTM STP 523:281–303

    Google Scholar 

  • Foriero A, Ladanyi B (1995) FEM assessment of large-strain thaw consolidation. J Geotech Eng 121(2):126–138. doi:10.1061/(ASCE)0733-9410(1995)121:2(126)

    Article  Google Scholar 

  • Gibson RE, England GL, Hussey MJL (1967) The theory of one dimensional consolidation of saturated clays: I. Finite non-linear consolidation of thin homogeneous layers. Géotechnique 17(2):261–273. doi:10.1680/geot.1967.17.3.261

    Article  Google Scholar 

  • Gudehus G (1996) A comprehensive constitutive equation for granular materials. Soils Found 36(1):1–12

    Article  Google Scholar 

  • Hansson K, Šimůnek J, Mizoguchi M et al (2004) Water flow and heat transport in frozen soil: numerical solution and freeze-thaw application. Vadose Zone J 3:693–704. doi:10.2113/3.2.693

    Google Scholar 

  • Haynes FD, Karalius JA (1977) Effect of temperature on the strength of frozen silt. CRREL Report 77-3

  • Herle I, Gudehus G (1999) Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech Cohesive-Frict Mater 4:461–486. doi:10.1002/(SICI)1099-1484(199909)4:5<461:AID-CFM71>3.0.CO;2-P

    Article  Google Scholar 

  • Hildebrand EE (1983) Thaw settlement and ground temperature model for highway design in permafrost areas. In: Proceedings, 4th International Conference on Permafrost, Fairbanks, Alaska, pp 492–497

  • Khalili N, Khabbaz MH (1998) A unique relationship for x for the determination of shear strength of unsaturated soils. Géotechnique 48(5):681–688. doi:10.1680/geot.51.5.477.39975

    Article  Google Scholar 

  • Khalili N, Geiser F, Blight G (2004) Effective stress in unsaturated soils: review with new evidence. Int J Geomech 4(2):115–126. doi:10.1061/(ASCE)1532-3641(2004)4:2(115)

    Article  Google Scholar 

  • Lai YM, Zhang Y, Zhang SJ et al (2009a) Experimental study of strength of frozen sandy soil under different water contents and temperatures. Rock Soil Mech 30(12):3665–3670. doi:10.3969/j.issn.1000-7598.2009.12.018 (in Chinese)

    Google Scholar 

  • Lai YM, Zhang MY, Li SY (2009b) Theory and application of cold regions engineering. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Marcher Th, Vermeer PA, von Wolffersdorff PA (2000) Hypoplastic and elastoplastic modeling-a comparison with test data. Constitutive modelling of granular materials. Springer, Berlin Heidelberg

    Google Scholar 

  • Morgenstern NR, Nixon JF (1971) One-dimensional consolidation of thawing soils. Can Geotech J 8(4):558–565. doi:10.1139/t71-057

    Article  Google Scholar 

  • Nelson RA, Luscher U, Rooney JW et al (1983) Thaw strain data and thaw settlement predictions for Alaskan soils. In: Proceedings, 4th International Conference on Permafrost, Fairbanks, Alaska, pp 912–917

  • Niu FJ, Xu J, Lin ZJ et al (2008) Permafrost characteristics of the Qinghai–Tibet plateau and methods of roadbed construction of railway. Acta Geol Sin 82(5):23–25. doi:10.3321/j.issn:1000-9515.2008.05.003 (in Chinese)

    Google Scholar 

  • Nixon JF, Morgenstern NR (1973) Practical extensions to a theory of consolidation for thawing soils. In: Proceedings, 2nd International Conference on permafrost, Edmonton, Yakutsk, USSR, pp 369–377

  • Panday S, Corapcioglu MY (1995) Solution and evaluation of permafrost thaw-subsidence model. J Eng Mech 121(3):460–469. doi:10.1061/(ASCE)0733-9399(1995)121:3(460)

    Article  Google Scholar 

  • Ponomarev VD, Sorokin VA, Fedoseev YG (1988) Compressibility of sandy permafrost during thawing. Soil Mech Found Eng 25(3):124–128. doi:10.1007/BF01709717

    Article  Google Scholar 

  • Qi JL, Sheng Y, Zhang JM et al (2007) Settlement of embankments in permafrost regions in the Qinghai–Tibet Plateau. Nor J Geogr 61(2):49–55. doi:10.1080/00291950701409249

    Google Scholar 

  • Shoop S (2005) Cap plasticity model for thawing soil. Calibration of constitutive models. J Cold Reg Eng 3:139–150. doi:10.1061/40786(165)8

    Google Scholar 

  • Sykes JF, Lennox WC, Charlwood RG (1974) Finite element permafrost thaw settlement model. J Geotech Eng Div 100(GT11):1185–1201

    Google Scholar 

  • Tsytovich NA (1975) Mechanics of frozen soil. McGraw-Hill, New York

    Google Scholar 

  • von Wolffersdorff PA (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive-Frict Mater 1:251–271. doi:10.1002/(SICI)1099-1484(199607)1:3<251:AID-CFM13>3.0.CO;2-3

    Article  Google Scholar 

  • Watanabe K, Wake T (2008) Hydraulic conductivity of frozen unsaturated soil. In: Proceedings, 9th International Conference on Permafrost, pp 147–152

  • Wu QB, Zhang TJ (2008) Recent permafrost warming on the Qinghai–Tibetan Plateau. J Geophys Res: Atmos. doi:10.1029/2007JD009539

    Google Scholar 

  • Wu ZW, Zhang JY, Wang CQ et al (1981) Primary research on the thaw settlement properties of frozen soil. Memoirs of Lanzhou Institute of Glaciology and Geocryology. Science Press, Beijing, pp 104–112 (in Chinese)

    Google Scholar 

  • Wu QB, Dong XF, Liu YZ et al (2007) Responses of permafrost on the Qinghai–Tibet Plateau to climate change and engineering construction. Arct Antarct Alp Res 39(4):682–687. doi:10.1657/1523-0430(07-508)[WU]2.0.CO;2

    Article  Google Scholar 

  • Xu XZ, Wang JC, Zhang LX (2001) Physics of frozen soil. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Yang H, Rahardjo H, Leong EC et al (2004) Factors affecting drying and wetting soil–water characteristic curves of sandy soils. Can Geotech J 41:908–920. doi:10.1139/t04-042

    Article  Google Scholar 

  • Yao XL (2010) Study on the theory and application of thaw consolidation of frozen soils. Dissertation, Chinese Academy of Sciences (in Chinese)

  • Yao XL, Qi JL, Wu W (2012) Three dimensional analysis of large strain thaw consolidation in permafrost. Acta Geotech. doi:10.1007/s11440-012-0162-y

    Google Scholar 

  • Zhu YL, Zhang JY, Wu ZW (1983) The calculation of the thaw and compressive settlements for frozen subgrade. Professional paper on permafrost studies of Qinghai–Xizang Plateau. Science Press, Beijing, pp 134–138 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was financially supported in part by the National Natural Science Foundation of China (51408486 and 41372304). These supports are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songhe Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, F. A Hypoplasticity-Based Method for Estimating Thaw Consolidation of Frozen Sand. Geotech Geol Eng 33, 1307–1320 (2015). https://doi.org/10.1007/s10706-015-9902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-015-9902-8

Keywords

Navigation