Skip to main content

A Review of Some Rock Mechanics Issues in Geothermal Reservoir Development

Abstract

Rock mechanics and geomechanical studies can provide crucial information for economic geothermal reservoir development. Although significant progress has been made in reservoir geomechanics, technical challenges specific to the geothermal area (high temps, data collection, experimentation issues) have prevented widespread use of geomechanics in geothermal reservoir development. However, as the geothermal industry moves to develop more challenging resources using the concept of enhanced geothermal systems (EGS), and to maximize productivity from conventional resources, the need for improved understanding of geomechanical issues and developing specific technologies for geothermal reservoirs has become critical. Rock mechanics research and improved technologies can impact areas related to in-situ stress characterization, initiation and propagation of artificial and natural fractures, and the effects of coupled hydro-thermo-chemo-mechanical processes on fracture permeability and induced seismicity. Rock mechanics/geomechanics research, including experimental and theoretical investigations as well as numerical and analytical solutions, has an important role in optimizing reservoir design and heat extraction strategies for sustainable geothermal energy development. A number of major areas where rock mechanics research can facilitate geothermal systems development are reviewed in this paper with particular emphasis on EGS design and management.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abe H, Sekine H, Shibuya Y (1983) Thermoelastic analysis of a crack-like reservoir in a hot dry rock during extraction of geothermal energy. J Energy Resour Tech 105:503–508

    Article  Google Scholar 

  2. Abe H, Hayashi K, Yamamoto T (1995) Process of crack growth from a reservoir formed along a joint by injection of fluid for extraction of geothermal heat. In: Mechanics of Jointed and Faulted Rock, MJFR-2, Vienna, pp 423–428

  3. Addis MA, Hanssen TH, Yassir N, Willoughby DR, Enever J (1998) A comparison of leak-off test and extended leak-off. In: Proceedings of Eurock ‘98, SPE/ISRM symposium: rock mechanics in petroleum engineering, 8–10 July 1998

  4. Amadei B, Stephansson O (1997) Rock stress and its measurement. Chapman and Hall, London

    Book  Google Scholar 

  5. Asanuma H, Soma N, Kaieda H, Kumano Y, Izumi T, Tezuka K, Niitsuma H, Wyborn D (2005) Microseismic monitoring of hydraulic stimulation at the Australian HDR project in Cooper Basin. In: Proceedings of the world geothermal congress, Antalya, 5 pp

  6. Axelsson G (2010) Sustainable geothermal utilization—case histories; definitions; research issues and modeling. Geothermics 39(4):283–291

    Article  Google Scholar 

  7. Baisch S, Weidler R, Voros R, Wyborn D, de Graaf L (2006) Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia. Bull Seismol Soc Am 96:2242–2256

    Article  Google Scholar 

  8. Bandis SC, Lumsden AC, Barton N (1983) Mechanical properties of rock Joints. Int J Rock Mech Min Sci Geomech Abstr 20:249–263

    Article  Google Scholar 

  9. Baria R, Baumgärtner J, Gérard A, Jung R, Garnish J (1999) European HDR research programme at Soultz-sous-Forets (France) 1987–1996. Geothermics 28:655–669

    Article  Google Scholar 

  10. Barr DT, Cleary MP (1983) Thermoelastic fracture solutions using distributions of singular influence functions—II: numerical modelling of thermally self-driven cracks. Int J Solids Struct 19(1):83–91

    Article  Google Scholar 

  11. Barton NR, Bakhtar K (1982) Rock joint description and modeling for the hydrothermomechanical design of nuclear waste repositories. TerraTek Engineering, Salt Lake City, Utah, Tech Rep 83–10

  12. Barton NR, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54

    Article  Google Scholar 

  13. Barton NR, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Mining Sci Geomech Abstr 22:121–140

    Article  Google Scholar 

  14. Baumgartner J, Rummel F (1989) Experience with “fracture pressurization tests” as a stress measuring technique in a jointed rock mass. Int J Rock Mech Min Sci Geomech Abstr 26:661–671

    Article  Google Scholar 

  15. Bažant ZP, Ohtsubo H (1977) Stability conditions for propagation of a system of cracks in a brittle solid. Mech Res Comm 4:353–366

    Article  Google Scholar 

  16. Bažant ZP, Ohtsubo H, Aoh K (1979) Stability and post-critical growth of a system of cooling or shrinkage cracks. Int J Fract 15:443–456

    Article  Google Scholar 

  17. Bell JS (2003) Practical methods for estimating in situ stresses for borehole stability applications in sedimentary basins. J Pet Sci Eng 38:111–119

    Article  Google Scholar 

  18. Bell JS, Gough DI (1979) Northeast–southwest compressive stress in Alberta: evidence from oil wells. Earth Planet Sci Lett 45:475–482

    Article  Google Scholar 

  19. Berard T, Cornet FH (2003) Evidence of thermally induced borehole elongation: a case study at Soultz, France. Int J Rock Mech Min Sci 40:1121–1140

    Article  Google Scholar 

  20. Bernabé Y, Evans B (2007) Numerical modelling of pressure solution deformation at axisymmetric asperities under normal load. Spec Publ—Geol Soc Lond 284:1185–1205

    Google Scholar 

  21. Bertani R (2012) Geothermal Power Generation in the World 2005–2010 Update Report. Geothermics 41:1–19

  22. Bobet A, Einstein HH (1998) Numerical modeling of fracture coalescence in a model rock material. Int J Fract 92:221–252

    Article  Google Scholar 

  23. Bodvarsson G (1976) Thermoelastic phenomena in geothermal systems. In: Proceedings of the second UN symposium on the development and use of geothermal resources, San Francisco, pp 903–907

  24. Boone TJ, Ingraffea AR, Roegiers J-C (1991) Simulation of hydraulic fracture propagation in poroelastic rock with application to stress measurement technique. Int J Numer Anal Meth Geomech 28:1–14

    Google Scholar 

  25. Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. J Elast 91(1–3):5–148

    Article  Google Scholar 

  26. Brudy M, Zoback MD, Fuchs K, Baumgartner J (1997) Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: implications for crustal strength. J Geophys Res 102:18453–18475

    Article  Google Scholar 

  27. Bruel D (2002) Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir; example of the Soultzsus-Forets European Hot Fractured rock Geothermal Project, Rhine Graben, France. Oil Gas Sci Tech Rev IFP 57:459–470

    Article  Google Scholar 

  28. Camacho G, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938

    Article  Google Scholar 

  29. Carter BJ, Desroches J, Ingraffea AR, Wawrzynek PA (2000) Simulating fully 3D hydraulic fracturing. In: Zaman M, Booker J, Gioda G (eds) Modeling in geomechanics. Wiley Publishers, New York

    Google Scholar 

  30. Cook AM, Myer LR, Cook NGW, Doyle FM (1990) The effect of tortuosity on flow through a natural fracture. In: Hustrulid WA, Johnson WA (eds) Rock mechanics contributions and challenges, Proceedings of the 31st US symposium on rock mechanics. Golden, CO

  31. Cornet FH (1987) Results from Le Mayet de Montagne project. Geothermics 16(4):355–374

    Article  Google Scholar 

  32. Cornet FH (2000) Comment on Large-scale in situ permeability tensor of rocks from induced microseismicity by S.A. Shapiro, P. Audigane and J.-J. Royer. Geophys J Int 140:465–469

    Article  Google Scholar 

  33. Cornet FH, Jianmin Y (1995) Analysis of induced seismicity for stress field determination and pore pressure mapping. Pure Appl Geophys 145(3/4):677–700

    Article  Google Scholar 

  34. Cornet FH, Valette B (1984) In situ stress determination from hydraulic injection test data. J Geophys Res 89:11527–11537

    Article  Google Scholar 

  35. Cornet FH, Helm J, Poitrenaud H, Etchecopar A (1997) Seismic and aseismic slips induced by large-scale fluid injection. Pure Appl Geophys 150:563–583

    Article  Google Scholar 

  36. De Bree P, Walters JV (1989) Micro/Minifrac test procedures and interpretation for in situ stress determination. Int J Rock Mech and Mining Sci Abstr 26:515–521

    Article  Google Scholar 

  37. Detwiler RL (2010) Permeability alteration due to mineral dissolution in partially saturated fractures. J Geophys Res 115:B09210–B09220

    Article  Google Scholar 

  38. Detwiler RL, Glass RJ, Bourcier WL (2003) Experimental observations of fracture dissolution: the role of Peclet number on evolving aperture variability. Geophys Res Lett 30(12):1648–1652

    Article  Google Scholar 

  39. Dickson MH, Fanelli M (2003) Geothermal energy: utilization and technology, UNESCO renewable energy series. Earthscan Publications Ltd, London

    Google Scholar 

  40. Djurhuus J, Aadnoy BS (2003) In situ stress state from inversion of fracturing data from oil wells and borehole image logs. J Petrol Sci Eng 38(3–4):121–130

    Article  Google Scholar 

  41. Dobroskok AA, Ghassemi A, Linkov AM (2005) Numerical simulation of crack propagation influenced by thermal and porous liquid stresses. Int J of Fract 134:L29–L34

    Article  Google Scholar 

  42. Dobson PF, Kneafsey TJ, Sonnenthal EI, Spycher N, Apps JA (2003) Experimental and numerical simulation of dissolution and precipitation: implications for fracture sealing at Yucca Mountain, Nevada. J Contam Hyd 62–63:459–476

    Article  Google Scholar 

  43. Elsworth D (1989) Thermal permeability enhancement of blocky rocks: one-dimensional flows. Int J Rock Mech Min Sci 26(3/4):329–339

    Google Scholar 

  44. Elsworth D, Yasuhara H (2009) Mechanical and transport constitutive models for fractures subject to dissolution and precipitation. Int J Numer Anal Meth Geomech 34(5):533–549

    Google Scholar 

  45. Evans KF, Cornet FH, Hashida T, Hayashi K, Ito T, Matsuki K, Wallroth T (1999) Stress and rock mechanics issues of relevance to HDR/HWR engineered geothermal systems: review of developments during the past 15 years. Geothermics 28:455–474

    Article  Google Scholar 

  46. Evans KF, Zappone A, Kraft T, Deichmann N, Moia F (2012) A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics 41:30–54

    Google Scholar 

  47. Fardin N, Jing L, Stephansson O (2001a) Heterogeneity and nisotropy of roughness of rock joints. In: Proceedings of the ISRM regional symposium EUROCK, Espoo, Finland, pp 223–227

  48. Fardin N, Stephansson O, Jing L (2001b) The scale dependence of rock joint surface Roughness. Int J Rock Mech Min Sci 38:659–669

    Article  Google Scholar 

  49. Finnie I, Cooper GA, Berlie J (1979) Fracture propagation in rock by transient cooling. Int J Rock Mech Min Sci 16:11–21

    Article  Google Scholar 

  50. Fortin M, Archambault G, Aubertin M, Gill DE (1988) An algorithm for predicting the effect of a variable normal stiffness on shear strength of discontinuities. In: Proceedings of the 15th Canadian rock mechanics symposium, Toronto, pp 109–117

  51. Foulger GR, Julian BR, Hill DP, Pitt AM, Malin PE, Shalev E (2004) Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing. J Volcanol Geoth Res 132:45–71

    Article  Google Scholar 

  52. Fredrich JT, Wong T-F (1986) Mechanics of thermally induced cracking in three crustal rocks. J Geophys Res 91(B12):12743–12754

    Article  Google Scholar 

  53. Gale JE (1982) The effects of fracture type (induced vs natural) on the stress—fracture closure—fracture permeability relationship. Proceedings of the 23rd US symposium on rock mechanic, Berkeley, CA, pp 290–296

  54. Gao H, Klein P (1997) Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J Mech Phys Solids 46:187–218

    Article  Google Scholar 

  55. Geertsma J, de Klerk FA (1969) A rapid method of predicting width and extent of hydraulically induced fractures. J Pet Tech (Dec):1571–1581

  56. Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J Geophys Res 89:9305–9320

    Article  Google Scholar 

  57. Ghassemi A, Kumar S (2007) Changes in fracture aperture and fluid pressure due to thermal stress and silica dissolution/precipitation induced by heat extraction from substrate rocks. Geothermics 36:115–140

    Article  Google Scholar 

  58. Ghassemi A, Roegiers J-C (1996) A three-dimensional poroelastic hydraulic fracture simulator using the displacement discontinuity method. In: Proceedings of the 2nd North American rock mechanics symposium, Montreal, pp 982–987

  59. Ghassemi A, Suresh Kumar G (2007) Variation of fracture aperture and pressure due to combined heat extraction-induced thermal stress and silica dissolution/precipitation. Geothermics 36:115–140

    Article  Google Scholar 

  60. Ghassemi A, Zhang Q (2004) Poro-thermoelastic mechanisms in wellbore stability and reservoir stimulation. In: Proceedings of the 29th workshop on geothermal reservoir engineering, Stanford University, CA

  61. Ghassemi A, Zhang Q (2004b) A transient fictitious stress boundary element method for poro-thermoelastic media. J Eng Anal Boundary Elem 28(11):1363–1373

    Article  Google Scholar 

  62. Ghassemi A, Zhang Q (2006) Poro-thermoelastic response of a stationary crack using the displacement discontinuity method. ASCE J Eng Mech 132(1):26–33

    Article  Google Scholar 

  63. Ghassemi A, Zhou XX (2011) A Three-dimensional poro- and thermoelastic model for analysis of fracture response in EGS. Geothermics 40:39–49

    Article  Google Scholar 

  64. Ghassemi A, Tarasovs S, Cheng AD-H (2003) An Integral equation method for modeling three-dimensional heat extraction from a fracture in hot dry rock. Int J Numer Anal Methods Geomech 27(12):989–1004

    Article  Google Scholar 

  65. Ghassemi A, Tarasovs S, Cheng AH-D (2005) Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoir. Int J Numer Anal Meth Geomech 29:829–844

    Article  Google Scholar 

  66. Ghassemi A, Tarasovs S, Cheng AH-D (2007) A three-dimensional study of the effects of thermo-mechanical loads on fracture slip in enhanced geothermal reservoir. Int J Rock Mech Min Sci 44:1132–1148

    Article  Google Scholar 

  67. Ghassemi A, Nygren A, Cheng AD-H (2008) Effects of heat extraction on fracture aperture: a poro-thermoelastic analysis. Geothermics 37(5):525–539

    Article  Google Scholar 

  68. Glass RJ, Rajaram H, Detwiler RL (2003) Immiscible displacements in rough-walled fractures: competition between roughening by random aperture variations and smoothing by in-plane curvature. Phys Rev E 68:061110–061116

    Article  Google Scholar 

  69. Goodman RE (1980) Introduction to rock mechanics. Wiley, New York

    Google Scholar 

  70. Goodman RE, St John C (1977) Finite element analysis for discontinuous rocks. Numerical Methods in Geotechnical Engineering, pp 148–175

  71. Gough DI, Bell JS (1981) Stress orientations from oil well fractures in Alberta and Texas. Can J Earth Sci 18:1358–1370

    Article  Google Scholar 

  72. Grasselli G (2006) Shear strength of rock joints based on quantified surface description. Rock Mech Rock Eng 39:295–314

    Article  Google Scholar 

  73. Grasselli G, Egger P (2003) Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int J Rock Mech Min Sci 40:25–40

    Article  Google Scholar 

  74. Grasselli G, Wirth J, Egger P (2002) Quantitative three-dimensional description of rough surface and parameter evolution with shearing. Int J Rock Mech Min Sci 39:789–800

    Article  Google Scholar 

  75. Guiducci C, Pellegrino A, Radu JP, Collin F, Charlier R (2002) Numerical modeling of hydro-mechanical fracture behavior. In: Numerical models in geomechanics (NUMOG VIII), Balkema, Rotterdam, pp 293–299

  76. Guo F, Morgenstern NR, Scott JD (1993) Interpretation of hydraulic fracturing breakdown pressure. Int J Rock Mech Min Sci Geomech Abstr 30(6):617–626

    Article  Google Scholar 

  77. Gutierrez-Negrin LCA, Quijano-Leon JL (2003) Analysis of seismicity in the Los Humeros, Mexico, geothermal field. Geotherm Resour Counc Trans 28:467–472

    Google Scholar 

  78. Haring M, Ulich S, Ladner F, Dyer B (2008) Characterization of the basel 1 enhanced geothermal system. Geothermics 37(5):469–495

    Article  Google Scholar 

  79. Hayashi K, Sayama T, Abe H (1990) Stability of a geothermal reservoir crack connecting with a horizontal natural fracture in the earth’s crust. In: Rossmanith H-P (ed) Mechanics of Jointed and Faulted Rock. MJFR, A.A. Balkema, Rotterdam, pp 659–666

    Google Scholar 

  80. Healy D, Jones RR, Holdsworth RD (2006) Three-dimensional brittle shear fracturing by tensile crack interaction. Nature 439. doi:10.1038/nature04346

  81. Hickman SH, Davatzes NC (2010) In situ stress and fracture characterization for planning of an EGS stimulation in the Desert Peak geothermal field, Nevada. In: Proceedings 35th workshop on geothermal reservoir engineering Stanford University, Stanford, CA

  82. Hopkirk RJ, Sharma D, Pralong PJ (1981) Coupled convective and conductive heat transfer in the analysis of HDR geothermal sources. In: Lewis RW et al (eds) Numerical methods in heat transfer. Wiley, New York, pp 261–307

    Google Scholar 

  83. Huenges E, Holl H-G, Legarth B, Zimmermann G, Saadat A, Tischner T (2004) The stimulation of a sedimentary geothermal reservoir in the North German basin: case study Groß Schönebeck”, Z. Angew Geol 2:24–27

    Google Scholar 

  84. Ito T, Hayashi K (1991) Physical background to the breakdown pressure in hydraulic fracturing tectonic stress measurements. Int J Rock Mech Min Sci Geomech Abstr 28:285–293

    Google Scholar 

  85. Iwai K (1976) Fundamental studies of fluid flow through a single fracture. Ph.D. dissertation, University of California, Berkeley, 208 pp

  86. Jeffrey RG, Zhang X, Bunger AP (2010). Hydraulic fracturing of naturally fractured reservoirs. In: Proceedings of the 35th workshop on geothermal reservoir engineering Stanford University, Stanford, CA

  87. Jing L, Nordlund E, Stephansson O (1992) An experimental study on the anisotropy and stress-dependency of the strength and deformability of rock joints. Int J Rock Mech Min Sci Geomech Abstr 29(6):535–542

    Article  Google Scholar 

  88. Jones FO (1975) A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. J Petrol Tech 27:21–27

    Google Scholar 

  89. Julian BR, Miller AD, Foulger GR (1998) Non-double-couple earthquakes, 1, Theory. Rev Geophys 36:525–549

    Article  Google Scholar 

  90. Julian BR, Foulger GR, Richards-Dinger K, Monastero F (2006) Time dependent seismic tomography of the Coso geothermal area, 1996–2004. In: Proceedings of the 31st workshop on geothermal reservoir engineering, Stanford University, CA

  91. Jung R (1989) Hydraulic in situ investigations of an artificial fracture in Falkenberg Granite. Int J Rock Mech Min Sci Geomech Abstr 26(3–4):301–308

    Google Scholar 

  92. Kappelmeyer O, Gerard A (1987) Production of heat from impervious hot crystalline rock sections (hot-dry-rock concept). In: Terrestrial heat from impervious rocks-Investigation in the Falkenberg granite massif. Geologisches Jahrbuc, Reihr E, Heft 39, pp 7–22

  93. Klein P, Gao H (1998) Crack nucleation and growth as strain localization in a virtual-bond continuum. Eng Fract Mech 61(1):21–48

    Article  Google Scholar 

  94. Kohl T, Evans KF, Hopkirk RJ, Ryback L (1995) Coupled hydraulic, thermal, and mechanical considerations for the simulation of hot dry rock reservoirs. Geothermics 24:345–359

    Article  Google Scholar 

  95. Koshelev VF, Ghassemi A (2003) Hydraulic fracture propagation near a natural discontinuity. In Proceedings of the 28th workshop on geothermal reservoir engineering. Stanford University, Stanford, CA

  96. Kulatilake PHSW, Um J (1999) Requirements for accurate quantification of self-affine roughness using the roughness-length method. Int J Rock Mech Min Sci Geomech Abstr 36(1):5–18

    Google Scholar 

  97. Kulatilake PHSW, Shou G, Huang TH, Morgan RM (1995) New peak shear strength criteria for anisotropic rock joints. Int J Rock Mech Min Sci Geomech Abstr 32(7):673–697

    Article  Google Scholar 

  98. Ladanyi B, Archambault G (1970) Simulation of shear behavior of a jointed rock mass. In: Proceedings of 11th US symposium on rock mechanics, pp 105–125

  99. Laubach and Tushman (2009) Laurentian palaeostress trajectories and ephemeral fracture permeability, Cambrian Eriboll Formation sandstones west of the Moine Thrust Zone, NW Scotland. J Geol Soc 166(2):349–362

    Article  Google Scholar 

  100. Lehner FK (1995) A model for intergranular pressure solution in open systems. Tectonophysics 245:153–170

    Article  Google Scholar 

  101. Li X, Cui L, and Roegiers J-C (1998) Thermoporoelastic modeling of wellbore stability in non-hydrostatic stress field. Int J Rock Mech Min Sci 35(4–5), Paper No. 063

  102. Liu J, Sheng J, Polak A, Elsworth D, Yasuhara H, Grader A (2006) A fully-coupled hydrological–mechanical–chemical model for fracture sealing and preferential opening. Int J Rock Mech Min Sci 43:23–36

    Article  Google Scholar 

  103. Lowell RP (1990) Thermoelasticity and the formation of black smokers. Geophys Res Lett 17:709–712

    Article  Google Scholar 

  104. Lowell RP, Germanovich LN (1995) Dike injection and the formation of megaplumes at ocean ridges. Science 267:1804–1807

    Article  Google Scholar 

  105. Lowell RP, Van Cappellen P, Germanovich LN (1993) Silica precipitation in fractures and the evolution of permeability in hydrothermal upflow zones. Science 260:192–194

    Article  Google Scholar 

  106. Lund JE, Freeston DH, Tonya LB (2011) Direct utilization of geothermal energy 2010 worldwide review. Geothermics 40(3):159–180

    Google Scholar 

  107. Maceka RW, Silling AA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43:1169–1178

    Article  Google Scholar 

  108. Majer EL (2007) White Paper: Induced seismicity and enhanced geothermal systems. Center for Computational Seismology, Ernest Orlando Lawrence Berkeley Laboratory, Berkelely 32 pp

    Google Scholar 

  109. Majer EL, Baria R, Stark M, Oates S, Bommer J, Smith B, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36:185–227

    Article  Google Scholar 

  110. Martin JT, Lowell RP (1997) On thermoelasticity and silica precipitation in hydrothermal systems: numerical modeling of laboratory experiments. J Geophys Res 102(B6):12095–12107

    Article  Google Scholar 

  111. Megel T, Kohl T, Rose P (2005) Reservoir modeling for stimulation planning at the Coso EGS project. Geoth Res Counc Trans 29:173–176

    Google Scholar 

  112. Michael AJ (1987) Use of focal mechanisms to determine stress: a control study. J Geophys Res 92:357–368

    Article  Google Scholar 

  113. Min KS, Ghassemi A (2011) Three-dimensional numerical analysis of thermal fracturing in rock. In: Proceedings of the 45th ARMA conference, San Francisco, CA

  114. Mossop A (2001) Seismicity, subsidence and strain at the geysers geothermal field. Ph.D. dissertation, Stanford University

  115. Nemat-Nasser S (1983) Numerical modelling of thermally self-driven cracks: discussion of David T. Barr and Michael P. Cleary: Thermoelastic fracture solutions using distributions of singular influence functions—II. Int J Solids Struct 22(11):1369–1373

    Google Scholar 

  116. Nemat-Nasser S, Keer LM, Parihar KS (1978) Unstable growth of thermally induced interacting cracks in brittle solids. Int J Solids Struct 14:409–430

    Article  Google Scholar 

  117. Neuzil CE, Tracy JV (1981) Flow through fractures. Water Resour Res 17:191–199

    Article  Google Scholar 

  118. Niitsuma H, Fehler M, Jones R et al (1999) Current status of seismic and borehole measurements for HDR/HWR development. Geothermics 28:475–490

    Article  Google Scholar 

  119. Nygren A, Ghassemi A (2004) An estimate of S Hmax from drilling-induced tensile fractures in Coso geothermal reservoir, CA. Poster Presentation 2004 GRC annual meeting, Palm Springs

    Google Scholar 

  120. Nygren A, Ghassemi A (2005) Influence of cold water injection on critically stressed fractures in Coso geothermal field, CA. In: Proceedings of the 39th US rock mechanics symposium, Anchorage, Alaska

  121. Olson JE (2008) Multi-fracture propagation modeling: application to hydraulic fracturing in shale and tight gas sands. In: Proceedings of the 42nd American rock mechanics symposium, San Francisco

  122. Parotidis M, Shapiro SA, Rothert E (2004) Backfront of seismicity induced after termination of borehole fluid injection. Geophys Res Lett 31:L02612. doi:10.1029/2003GL018987

    Article  Google Scholar 

  123. Pearson C (1981) The relationship between micro-seismicity and high pore pressure during hydraulic stimulation experiments in low permeability rocks. J Geophy Res 86(B9):7855

    Article  Google Scholar 

  124. Perkins TK, Gonzalez JA (1985) The effect of thermoelastic stress on injection well fracturing. SPE J 2:78–88

    Google Scholar 

  125. Perkins TK, Kern LR (1961) Widths of hydraulic fractures. J Pet Tech Sep, pp 937–949

  126. Peska P, Zoback MD (1995) Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength. J Geophys Res 100(12791–12):811

    Google Scholar 

  127. Petty S (2002) Thermal stimulation of well 83-16. In: Rose P (ed) EGS quarterly report. University of Utah Energy and Geoscience Institute, Utah

    Google Scholar 

  128. Petty S (2012) Personal communication

  129. Pine RJ, Batchelor AS (1984) Downward migration of shearing in jointed rock during hydraulic injections. Int J Rock Mech Min Sci Geomech Abstr 21(5):249–263

    Article  Google Scholar 

  130. Plumb R, Hickman SH (1985) Stress-induced borehole elongation: a comparison between the four-arm dipmeter and the borehole televiewer in the Auburn geothermal well. J Geophys Res 90:5513–5521

    Article  Google Scholar 

  131. Pruess K (1991) TOUGH2: a general numerical simulator for multiphase fluid and heat flow. Lawrence Berkeley Laboratory Report LBL-29400, Berkeley, CA

  132. Qian W, Pedersen LB (1991) Inversion of borehole breakout orientation data. J Geophys Res 96:20093–20107

    Article  Google Scholar 

  133. Rabemananaa V, Durstb P, Bächlerc D, Vuataza FD, Kohl T (2003) Geochemical modelling of the Soultz-sous-Forêts hot fractured rock system: comparison of two reservoirs at 3.8 and 5 km depth. Geothermics 32(4–6):645–653

    Article  Google Scholar 

  134. Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Min Sci Geomech Abstr 22:251–261

    Article  Google Scholar 

  135. Rawal C, Ghassemi A (2012) A Reactive thermo-poroelastic analysis of cold water injection into an enhanced geothermal reservoir. Geotehrmics (to appear)

  136. Read RS (2004) 20 years of excavation response studies at AECL’s underground research laboratory. Int J Rock Mech Min Sci 41:1251–1275

    Article  Google Scholar 

  137. Revil A (1999) Pervasive pressure-solution transfer: a poro-visco-plastic model. Geophys Res Lett 26:255–258

    Article  Google Scholar 

  138. Rothert E, Shapiro SA (2003) Microseismic monitoring of borehole fluid injections: Data modeling and inversion for hydraulic properties of rocks. Geophysics 68:685–689. doi:10.1190/1.1567239

    Google Scholar 

  139. Rudnicki JW (1999) Alteration of regional stress by reservoirs and other inhomogeneities: stabilizing or destabilizing? In: Proceedings of the ninth international congress on rock mechanics, Paris, France, pp 1629–1637

  140. Rutqvist J, Stephansson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrol J 11:7–40

    Google Scholar 

  141. Rutqvist J, Tsang C-F, Stephansson O (1998) Determination of fracture storativity in hard rocks using high pressure testing. Water Res 34:2551–2560

    Article  Google Scholar 

  142. Rutqvist J, Majer E, Oldenburg C, Peterson J, Vasco D (2006) Integrated modeling and field study of potential mechanisms for induced seismicity at The Geysers Geothermal Field, California. Geotherm Resour Counc Trans 30:629–633

    Google Scholar 

  143. Saeb S, Amadei B (1990) Modelling joint response under constant or variable normal stiffness boundary conditions. Int J Rock Mech Min Sci Geomech Abstr 27(3):213–217

    Article  Google Scholar 

  144. Safari MR, Ghassemi A (2011) A 3D analysis of enhanced geothermal reservoir: shear slip and micro-seismicity. Proceedings of the 45th US rock mechanics/geomechanics symposium, June 26–29, San Francisco, CA

  145. Segall P (1989) Earthquakes triggered by fluid extraction. Geology 17:942–946

    Article  Google Scholar 

  146. Segall P, Fitzgerald SD (1998) A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 289:117–128

    Article  Google Scholar 

  147. Sesetty V, Ghassemi A (2012) Modeling and analysis of stimulation for fracture network generation. In: Proceedings of the 37th workshop on geothermal reservoir engineering, Stanford University, Stanford, CA

  148. Shapiro S, Huenges E, Borm G (1997) Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys J Int 131:F15–F18

    Article  Google Scholar 

  149. Shapiro S, Audigane P, Royer J (1999) Large-scale in situ permeability tensor of rocks from induced microseismicity. Geophys J Int 137:207–213

    Article  Google Scholar 

  150. Shapiro SA, Rothert E, Rath V, Rindschwentner J (2002) Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics 67:212–220

    Article  Google Scholar 

  151. Sheridan JM, Hickman SH (2004) In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field. In: Proceedings of the 29th workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, January 26–28, 2004

  152. Sheridan J, Kovac K, Rose P, Barton C, McCulloch J, Berard B, Moore J, Petty S, Spielman P (2003) In Situ stress, fracture and fluid flow analysis-East Flank of the Coso geothermal field. In: Proceedings of the twenty-eighth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, USA, pp 34–49

  153. Singurindy O, Berkowitz B (2003) Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock. Water Resour Res 39:1016–1030

    Article  Google Scholar 

  154. Stark MA (1990) Imaging injected water in the Geysers reservoir using microearthquakes data. Geotherm Resour Counc Trans 14(Part II):1697–1704

    Google Scholar 

  155. Steefel C, Lasaga AC (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am J Sci 294:529–592

    Article  Google Scholar 

  156. Steefel CI, Litchner PC (1998) Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry. J Hydrol 209:186–199

    Article  Google Scholar 

  157. Suresh Kumar GS, Ghassemi A (2005) Numerical modeling of non-isothermal quartz dissolution/precipitation in a coupled fracture–matrix system. Geothermics 34(4):411–439

    Article  Google Scholar 

  158. Svenson E, Schweisinger T, Murdoch LC (2007) Analysis of the hydromechanical behavior of a flat-lying fracture during a slug test. J Hydrol 347:35–47

    Article  Google Scholar 

  159. Swenson D, Hardemana B (1997) The effects of thermal deformation on flow in a jointed geothermal reservoir. Int J Rock Mech Min Sci 34(3–4): 308.E1–308.E19

  160. Swenson D et al (1997) GEOCRACK: a coupled fluid flow/heat transfer/rock deformation program for analysis of fluid flow in jointed rock. Mechanical Engineering Department, Kansas State University, Manhattan

    Google Scholar 

  161. Tang CA, Tham LG, Lee PKK, Yang TH, Li LC (2002) Coupled analysis of flow, stress and damage (FSD) in rock failure. Int J Rock Mech Min Sci 39:477–489

    Article  Google Scholar 

  162. Tao Q, Ghassemi A (2010) Poro-thermoelastic borehole stress analysis for determination of the in situ stress and rock strength. Geothermics 39(3):250–259

    Article  Google Scholar 

  163. Tarasovs S, Ghassemi A (2010) A Study of Propagation of Cooled Cracks in a Geothermal Reservoir. In: Geothermal resources council annual meeting. 2010: Sacramento, CA

  164. Vernik L, Zoback MD (1990) Strength anisotropy in crystalline rock–implications for assessment of in situ stresses from wellbore breakouts. In: Proceedings 31st US symposium on rock mechanics, A.A. Balkema, Rotterdam, pp 841–848

  165. Warpinski NR, Teufel LW (1987) Influence of geological discontinuities on hydraulic fracture propagation. JPT 39:209–220

    Article  Google Scholar 

  166. Warpinski NR, Wright TB, Uhl JE, Engler BP, Drozda PM, Pearson RE (1996) Micro-seismic monitoring of the B-Sand hydraulic fracture experiment at DOE/GRI Multi-site Projects, SPE 36450

  167. Warpinski NR, Wolhart SL, Wright CA (2001) Analysis and prediction of microseismicity induced by hydraulic fracturing. SPE Paper # 71649

  168. Wells JT, Ghiorso MS (1991) Coupled fluid flow and reaction in mid-ocean ridge hydrothermal systems I: The behavior of silica. Geochim Cosmochim Acta 55:2467–2482

    Article  Google Scholar 

  169. Weng X, Kresse O, Cohen C, Wu R, Gu H (2011) Modeling of hydraulic fracture network propagation in a naturally fractured formation, SPE 140253, presented at the SPE Hydraulic fracturing technology conference and exhibition held in the woodlands. Texas, USA

    Google Scholar 

  170. Wessling S, Junker R, Rutqvist J, Silin D, Sulzbacher H, Tischner T, Tsang F-F (2009) Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs. Geothermics 38:211–226

    Article  Google Scholar 

  171. Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper & Co., San Francisco, CA, USA, 319 pp

  172. Willis-Richards J, Watanabe K, Takahashi H (1996) Progress toward a stochastic rock mechanics model of engineered geothermal systems. J Geophys Res 101(B8):17481–17496

    Google Scholar 

  173. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

  174. Xu T, Pruess K (2001) Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably fractured rocks: 1. Methodology. Am J Sci 301:16–33

    Article  Google Scholar 

  175. Yasuhara H, Elsworth D (2006) A numerical model simulating reactive transport and evolution of fracture permeability. Int J Numer Anal Meth Geomech 30:1039–1062

    Article  Google Scholar 

  176. Yasuhara H, Elsworth D, Polak A (2003) A mechanistic model for compaction of granular aggregates moderated by pressure solution. J Geophys Res 108(B11) 2530

    Google Scholar 

  177. Yazid A, Abdelkader N, Abdelmadjid H (2009) State-of-the-art review of the X-FEM for computational fracture mechanics. Appl Math Model 33:4269–4282

    Article  Google Scholar 

  178. Yuan SC, Harrison JP (2006) A review of the state of the art in modeling progressive mechanical breakdown and associated fluid flow in intact heterogeneous rock. Int J Rock Mech Min Sci 43:1001–1022

    Article  Google Scholar 

  179. Zhang ZN, Ge XR (2005a) Micromechanical consideration of tensile crack behavior based on virtual internal bond in contrast to cohesive stress. Theor Appl Fract Mech 43(3):342–359

    Article  Google Scholar 

  180. Zhang ZN, Ge XR (2005b) A new quasi-continuum constitutive model for crack growth in an isotropic solid. Eur J Mech A Solids 24(2):243–252

    Article  Google Scholar 

  181. Zhang ZN, Ge XR (2006) Micromechanical modelling of elastic continuum with virtual multi-dimensional internal bonds. Int J Numer Meth Eng 65:135–146

    Article  Google Scholar 

  182. Zhang Z, Ghassemi A (2011) Simulation of hydraulic fracture propagation near a natural fracture using virtual multidimensional internal bonds. Int J Numer Anal Methods Geomech 35:480–495

    Article  Google Scholar 

  183. Zhang X, Jeffrey RJG (2006) The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures. Geophys J Int 166:1454–1465

    Article  Google Scholar 

  184. Zhou X, Ghassemi A (2011). Three-dimensional poroelastic analysis of a pressurized natural fracture. Int J Rock Mech. doi:10.1016/ j.ijrmms.2011.02.002

  185. Zoback MD, Healy JH (1992) In situ stress measurements to 3:5 km depth in the Cajon Pass scientific research borehole: implications for the mechanics of crustal faulting. J Geophys Res 97:5039–5057

    Article  Google Scholar 

  186. Zoback MD, Moos D, Mastin L, Anderson RN (1985) Wellbore breakouts and in situ stress. J Geophys Res 90:5523–5530

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to express his appreciation to two reviewers, and to Dr. Darla-Jean Weatherford for proof-reading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ghassemi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghassemi, A. A Review of Some Rock Mechanics Issues in Geothermal Reservoir Development. Geotech Geol Eng 30, 647–664 (2012). https://doi.org/10.1007/s10706-012-9508-3

Download citation

Keywords

  • Coupled processes
  • Enhanced geothermal systems
  • Shear slip
  • Hot dry rock
  • Hydraulic fracturing
  • In-situ stress
  • Induced seismicity
  • Joints
  • Mineral dissolution
  • Fracture network
  • Fracture permeability
  • Poroelasticity
  • Pressure solution
  • Reservoir geomechanics
  • Reservoir stimulation
  • Stimulated volume
  • Thermal stress
  • Thermal shock