Skip to main content

N-fertiliser application or legume integration enhances N cycling in tropical pastures

Abstract

Understanding the effects of N application or the introduction of a legume on N cycling is critical for achieving productive and sustainable grassland systems. This 2-year study assessed the N cycling of three pasture treatments: (1) mixed Marandu palisadegrass (Brachiaria brizantha) and forage peanut (Arachis pintoi) without N fertiliser (GRASS + LEGUME); (2) monoculture Marandu palisadegrass fertilised with 150 kg N ha−1 year−1 (GRASS + N); and (3) monoculture Marandu palisadegrass without N fertiliser (GRASS). Continuous stocking was used with a target canopy height of 0.20 to 0.25 m. Litter responses, forage and N intake, N livestock excretion and N cycling were measured. Existing litter and litter deposition rate were greatest in GRASS pasture (3030 and 84.3 vs. 2140 kg ha−1 and 64.8 kg OM ha−1 d−1; average of GRASS + N and GRASS + LEGUME pastures, respectively; P < 0.10). Litter decomposition rate in GRASS pasture was smaller 30.4 and 36.0% compared to GRASS + N and GRASS + LEGUME pastures, respectively (P < 0.10). The GRASS + N obtained greatest (P < 0.10) faecal N excretion (21.7 vs. 13.8 kg N ha−1 season−1), and urinary N excretion (32.0 vs. 14.2 kg N ha−1 season−1). In the GRASS + N and GRASS + LEGUME pastures, there was a positive overall change of N in the soil–plant–animal system of 13 and 33 kg N ha−1 year−1, respectively. In the GRASS pasture, there was an overall negative change of N in the soil–plant–animal system of − 41 kg N ha−1 year−1. Nitrogen application or the integration of forage peanut in a grass pasture increased the conservation of soil N reserves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbasi MK, Tahir MM, Khurshid M (2015) Impact of the addition of different plant residues on nitrogen mineralization–immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth 6:197–205. https://doi.org/10.5194/se-6-197-2015

    Article  Google Scholar 

  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  3. Allen VG, Batello C, Beretta EJ, Hodgson J, Kothmann M, Li X, Mclvor J, Milne J, Morris C, Peeters A, Sanderson M (2011) An international terminology for grazing lands and grazing animals. Grass Forage Sci 66:2–28. https://doi.org/10.1111/j.1365-2494.2010.00780.x

    Article  Google Scholar 

  4. AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  5. Apolinário VXO, Dubeux JCB Jr, Mello ACL, Vendramini JMB, Lira MA, Santos MVF, Muir JP (2013) Deposition and decomposition of signal grass pasture litter under varying nitrogen fertilizer and stocking rates. Agron J 105:999–1004. https://doi.org/10.2134/agronj2012.0433

    Article  Google Scholar 

  6. Araujo KEC, Vergara C, Guimarães AP, Rouws JRC, Jantalia CP, Urquiaga S, Alves BJR, Boddey RM (2018) Changes in 15N natural abundance of biologically fixed N2 in soybean due to shading, rhizobium strain and plant growth stage. Plant Soil 426:413–428. https://doi.org/10.1007/s11104-018-3627-4

    CAS  Article  Google Scholar 

  7. Arnold SL, Schepers JS (2004) A simple roller-mill grinding procedure for plant and soil samples. Comm Soil Sci Plant Anal 35:537–545. https://doi.org/10.1081/CSS-120029730

    CAS  Article  Google Scholar 

  8. Barthram GT (1985) Experimental techiniques: the HFRO swar stick. In: Alcock MM (ed) Biennial report of the hill farming research organization. Hill Farming Research Organization, pp 29–30

  9. Baumont R, Cohen-Salmon D, Prache S, Sauvant D (2004) A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Anim Feed Sci Tech 112:5–28. https://doi.org/10.1016/j.anifeedsci.2003.10.005

    Article  Google Scholar 

  10. Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25. https://doi.org/10.1139/a96-017

    CAS  Article  Google Scholar 

  11. Boddey RM, Macedo R, Tarré RM, Ferreira E, Oliveira OC, Rezende CdP, Cantarutti RB, Pereira JM, Alves BJR, Urquiaga S (2004) Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agric Ecosyst Environ 103:389–403. https://doi.org/10.1016/j.agee.2003.12.010

    CAS  Article  Google Scholar 

  12. Boddey RM, Casagrande DR, Homem BGC, Alves BJR (2020) Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: a review. Grass Forage Sci 75:357–371. https://doi.org/10.1111/gfs.12498

    CAS  Article  Google Scholar 

  13. Cadisch G, Sylvester-Bradley R, Nösberger J (1989) 15N-Based estimation of nitrogen fixation by eight tropical forage-legumes at two levels of P: K supply. Field Crops Res 22:191–194. https://doi.org/10.1016/0378-4290(89)90091-9

    Article  Google Scholar 

  14. Carvalho LR, Pereira LET, Hungria M, Camargo PB, Da Silva SC (2019) Nodulation and biological nitrogen fixation (BNF) in forage peanut (Arachis pintoi) cv. Belmonte subjected to grazing regimes. Agric Ecosyst Environ 278:96–106. https://doi.org/10.1016/j.agee.2019.02.016

    Article  Google Scholar 

  15. Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW (2013) Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE 8:e62671. https://doi.org/10.1371/journal.pone.0062671

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Chen XB, Gomes MJ (1992) Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives—an overview of the technical details. Rowett Research Institute/International Feed Research Unit, Aberdeen

  17. Chuan X, Carlyle CN, Bork EW, Chang SX, Hewins DB (2020) Extracellular enzyme activity in grass litter varies with grazing history, environment and plant species in temperate grasslands. Sci Total Environ 702:134562. https://doi.org/10.1016/j.scitotenv.2019.134562

    CAS  Article  PubMed  Google Scholar 

  18. Claessen MEC, Barreto WO, Paula JL, Duarte MN (1997) Manual de métodos de análise de solo.: Centro Nacional de Pesquisa de Solos. https://www.agencia.cnptia.embrapa.br/Repositorio/Manual+de+Metodos_000fzvhotq,k02ndwx5ok0q43a0ram31wtr.pdf. Acessed 16 June 2019

  19. Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x

    Article  PubMed  Google Scholar 

  20. Detmann E, Valente ÉEL, Batista ED, Huhtanen P (2014) An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livest Sci 162:141–153. https://doi.org/10.1016/j.livsci.2014.01.029

    Article  Google Scholar 

  21. Dubeux JCB Jr, Sollenberger LE, Interrante SM, Vendramini JMB, Stewart RL Jr (2006a) Litter decomposition and mineralization in bahiagrass pastures managed at different intensities. Crop Sci 46:1305–1310. https://doi.org/10.2135/cropsci2005.08-0263

    CAS  Article  Google Scholar 

  22. Dubeux JCB Jr, Sollenberger LE, Vendramini JMB, Stewart RL Jr, Interrante SM (2006b) Litter mass, deposition rate, and chemical composition in bahiagrass pastures managed at different intensities. Crop Sci 46:1299–1304. https://doi.org/10.2135/cropsci2005.08-0262

    CAS  Article  Google Scholar 

  23. Dubeux JCB Jr, Sollenberger LE, Mathews BW, Scholberg JM, Santos HQ (2007) Nutrient cycling in warm-climate grasslands. Crop Sci 47:915–928. https://doi.org/10.2135/cropsci2006.09.0581

    CAS  Article  Google Scholar 

  24. Fagundes JL, Fonseca DM, Mistura C, de Morais RV, Vitor CMT, Gomide JA, Nascimento Junior D, Casagrande DR, Costa LT (2006) Características morfogênicas e estruturais do capim-braquiária em pastagem adubada com nitrogênio avaliadas nas quatro estações do ano. Rev Bras Zootec 35:21–29. https://doi.org/10.1590/S1516-35982006000100003

    Article  Google Scholar 

  25. García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–1053. https://doi.org/10.1111/ele.12137

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gomes FK, Oliveira MDBL, Homem BGC, Boddey RM, Bernardes TF, Gionbelli MP, Lara MAS, Casagrande DR (2018) Effects of grazing management in brachiaria grass-forage peanut pastures on canopy structure and forage intake. J Anim Sci 96:3837–3849. https://doi.org/10.1093/jas/sky236

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gomes FK, Homem BGC, Oliveira MDBL, Dubeux JCB Jr, Boddey RM, Bernardes TF, Casagrande DR (2020) Defoliation frequency affects litter responses and nitrogen excretion by heifers in palisadegrass–forage peanut pastures. Agron J 112:3089–3100. https://doi.org/10.1002/agj2.20240

    CAS  Article  Google Scholar 

  28. Haynes RJ, Williams PH (1993) Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv Agron 49:119–199. https://doi.org/10.1016/S0065-2113(08)60794-4

    CAS  Article  Google Scholar 

  29. Homem BGC, Lima IBG, Spasiani PP, Ferreira IM, Boddey RM, Bernardes TF, Dubeux Jr JCB, Casagrande DR (2021a) Palisadegrass pastures with or without nitrogen or mixed with forage peanut grazed to a similar target canopy height. 1. Effects on herbage mass, canopy structure and forage nutritive value. Grass Forage Sci 76:400–412. https://doi.org/10.1111/gfs.12532

  30. Homem BGC, Lima IBG, Spasiani PP, Borges LPC, Boddey RM, Dubeux Jr. JCB, Bernardes TF, Casagrande DR (2021b) Palisadegrass pastures with or without nitrogen or mixed with forage peanut grazed to a similar target canopy height. 2. Effects on animal performance, forage intake and digestion, and nitrogen metabolism. Grass Forage Sci 76:413-426. https://doi.org/10.1111/gfs.12533

  31. Huhtanen P, Kaustell K, Jaakkola S (1994) The use of internal markers to predict total digestibility and duodenal flow of nutrients in cattle given six different diets. Anim Feed Sci Tech 48:211–227. https://doi.org/10.1016/0377-8401(94)90173-2

    Article  Google Scholar 

  32. Johnson CR, Reiling BA, Mislevy P, Hall MB (2001) Effects of nitrogen fertilization and harvest date on yield, digestibility, fiber, and protein fractions of tropical grasses. J Anim Sci 79:2439–2448. https://doi.org/10.2527/2001.7992439x

    CAS  Article  PubMed  Google Scholar 

  33. Kohmann MM, Sollenberger LE, Dubeux JCB Jr, Silveira ML, Moreno LSB, da Silva LS, Aryal P (2018) Nitrogen fertilization and proportion of legume affect litter decomposition and nutrient return in grass pastures. Crop Sci 58:2138–2148. https://doi.org/10.2135/cropsci2018.01.0028

    CAS  Article  Google Scholar 

  34. Lafarge M (2006) Reproductive tillers in cut tall fescue swards: differences according to sward age and fertilizer nitrogen application, and relationships with the local dynamics of the sward. Grass Forage Sci 61:182–191. https://doi.org/10.1111/j.1365-2494.2006.00525.x

    Article  Google Scholar 

  35. Lessa ACR, Madari BE, Paredes DS, Boddey RM, Urquiaga S, Jantalia CP, Alves BJR (2014) Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agric Ecosyst Environ 190:104–111. https://doi.org/10.1016/j.agee.2014.01.010

    CAS  Article  Google Scholar 

  36. Littell RC, Pendergast J, Natarajan R (2000) Modelling covariance structure in the analysis of repeated measures data. Stat Med 19:1793–1819. https://doi.org/10.1002/1097-0258(20000715)19:13%3c1793::Aid-sim482%3e3.0.Co;2-q

    CAS  Article  PubMed  Google Scholar 

  37. Liu K, Sollenberger LE, Silveira ML, Vendramini JMB, Newman YC (2011) Grazing intensity and nitrogen fertilization affect litter responses in ‘tifton 85’ bermudagrass pastures: II. Decomposition and nitrogen mineralization. Agron J 103:163–168. https://doi.org/10.2134/agronj2010.0320

    Article  Google Scholar 

  38. Liu K, Sollenberger LE, Silveira ML, Vendramini JMB, Newman YC (2017) Nutrient pools in bermudagrass swards fertilized at different nitrogen levels. Crop Sci 57:525–533. https://doi.org/10.2135/cropsci2016.08.0722

    CAS  Article  Google Scholar 

  39. Lopes de Sá OAA (2017) Leguminosas forrageiras em pastos consorciados: métodos para mensurar a composição botânica da dieta e diversidade e eficiência de bactérias fixadoras de nitrogênio em amendoim forrageiro. Thesis (Ph.d. in Animal Science)- Federal University of Lavras, Lavras. 76 p. http://repositorio.ufla.br/jspui/handle/1/28102

  40. Lopes de Sá OAA (2017) Leguminosas forrageiras em pastos consorciados: métodos para mensurar a composição botânica da dieta e diversidade e eficiência de bactérias fixadoras de nitrogênio em amendoim forrageiro. Thesis, Federal University of Lavras

  41. MacDiarmid BN, Watkin BR (1972) The cattle dung patch. Grass Forage Sci 27:43–47. https://doi.org/10.1111/j.1365-2494.1972.tb00684.x

    Article  Google Scholar 

  42. Martha JRGB, Alves E, Contini E (2012) Land-saving approaches and beef production growth in Brazil. Agric Syst 110:173–177. https://doi.org/10.1016/j.agsy.2012.03.001

    Article  Google Scholar 

  43. McNeill AM, Zhu CY, Fillery IRP (1997) Use of in situ 15N- labelling to estimate the total below-ground nitrogen of pasture legumes in intact soil–plant systems. Aust J Agric Res 48:295–330. https://doi.org/10.1071/A96097

    Article  Google Scholar 

  44. Moore JE, Mott GO (1974) Recovery of residual organic matter from in vitro digestion of forages. J Dairy Sci 57:1258–1259. https://doi.org/10.3168/jds.S0022-0302(74)85048-4

    Article  Google Scholar 

  45. Muir JP, Pitman WD, Foster JL (2011) Sustainable, low-input, warm-season, grass–legume grassland mixtures: mission (nearly) impossible? Grass Forage Sci 66:301–315. https://doi.org/10.1111/j.1365-2494.2011.00806.x

    Article  Google Scholar 

  46. Muir JP, Pitman WD, Dubeux JC, Foster JL (2014) The future of warm-season, tropical and subtropical forage legumes in sustainable pastures and rangelands. Afr J Range Forage Sci 31:187–198. https://doi.org/10.2989/10220119.2014.884165

    Article  Google Scholar 

  47. Myers WD, Ludden PA, Nayigihugu V, Hess BW (2004) Technical note: a procedure for the preparation and quantitative analysis of samples for titanium dioxide. J Anim Sci 82:179–183. https://doi.org/10.2527/2004.821179x

    CAS  Article  PubMed  Google Scholar 

  48. Okito A, Alves BRJ, Urquiaga S, Boddey RM (2004) Isotopic fractionation during N2 fixation by four tropical legumes. Soil Biol Biochem 36:1179–1190. https://doi.org/10.1016/j.soilbio.2004.03.004

    CAS  Article  Google Scholar 

  49. Paiva AJ, Silva SCd, Pereira LET, Guarda VDÁ, Pereira PdM, Caminha FO (2012) Structural characteristics of tiller age categories of continuously stocked marandu palisade grass swards fertilized with nitrogen. Rev Bras Zootec 41:24–29. https://doi.org/10.1590/S1516-35982012000100004

    Article  Google Scholar 

  50. Paiva AJ, Pereira LET, Silva SCd, Dias RAP (2015) Identification of tiller age categories based on morphogenetic responses of continuously stocked marandu palisade grass fertilised with nitrogen. Cienc Rural 45:867–870. https://doi.org/10.1590/0103-8478cr20120738

    Article  Google Scholar 

  51. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  52. Pereira JM, Rezende CdP, Borges AMF, Homem BGC, Casagrande DR, Macedo TM, Alves BJR, Sant’Anna SAC, Urquiaga S, Boddey RM (2020) Production of beef cattle grazing on Brachiaria brizantha (Marandu grass)—Arachis pintoi (forage peanut cv. Belomonte) mixtures exceeded that on grass monocultures fertilized with 120 kg N/ha. Grass Forage Sci 75:28–36. https://doi.org/10.1111/gfs.12463

    Article  Google Scholar 

  53. Rasmussen J, Gylfadóttir T, Dhalama NR, De Notaris C, Kätterer T (2019) Temporal fate of 15N and 14C leaf-fed to red and white clover in pure stand or mixture with grass—implications for estimation of legume derived N in soil and companion species. Soil Biol Biochem 133:60–71. https://doi.org/10.1016/j.soilbio.2019.02.011

    CAS  Article  Google Scholar 

  54. Rezende CdP, Cantarutti RB, Braga JM, Gomide JA, Pereira JM, Ferreira E, Tarré R, Macedo R, Alves BJR, Urquiaga S, Cadisch G, Giller KE, Boddey RM (1999) Litter deposition and disappearance in Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Nutr Cycl Agroecosyst 54:99–112. https://doi.org/10.1023/A:1009797419216

    Article  Google Scholar 

  55. Sá Júnior A, de Carvalho LG, da Silva FF, de Carvalho AM (2012) Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theor Appl Climatol 108:1–7. https://doi.org/10.1007/s00704-011-0507-8

    Article  Google Scholar 

  56. Sant’Anna SAC, Jantalia CP, Sá JM, Vilela L, Marchão RL, Alves BJR, Urquiaga S, Boddey RM (2017) Changes in soil organic carbon during 22 years of pastures, cropping or integrated crop/livestock systems in the Brazilian Cerrado. Nutr Cycl Agroecosyst 108:101–120. https://doi.org/10.1007/s10705-016-9812-z

    CAS  Article  Google Scholar 

  57. Sbrissia AF, Duchini PG, Zanini GD, Santos GT, Padilha DA, Schmitt D (2018) Defoliation strategies in pastures submitted to intermittent stocking method: underlying mechanisms buffering forage accumulation over a range of grazing heights. Crop Sci 58:945–954. https://doi.org/10.2135/cropsci2017.07.0447

    Article  Google Scholar 

  58. Scholefield D, Lockyer DR, Whitehead DC, Tyson KC (1991) A model to predict transformations and losses of nitrogen in UK pastures grazed by beef cattle. Plant Soil 132:165. https://doi.org/10.1007/BF00010397

    CAS  Article  Google Scholar 

  59. Shearer G, Kohl D (1986) N2-fixation in field settings: estimations based on natural 15N abundance functional. Plant Biol 13:699–756. https://doi.org/10.1071/PP9860699

    CAS  Article  Google Scholar 

  60. Silva LFC, Valadares Filho SC, Chizzotti ML, Rotta PP, Prados LF, Valadares RFD, Zanetti D, Braga JMS (2012) Creatinine excretion and relationship with body weight of Nellore cattle. Rev Bras Zootec 41:807–810. https://doi.org/10.1590/S1516-35982012000300046

    Article  Google Scholar 

  61. Sollenberger LE, Kohmann MM, Dubeux JCB Jr, Silveira ML (2019) Grassland management affects delivery of regulating and supporting ecosystem services. Crop Sci 59:441–459. https://doi.org/10.2135/cropsci2018.09.0594

    CAS  Article  Google Scholar 

  62. Tamele OH, Lopes de Sá OAA, Bernardes TF, Lara MAS, Casagrande DR (2018) Optimal defoliation management of brachiaria grass–forage peanut for balanced pasture establishment. Grass Forage Sci 73:522–531. https://doi.org/10.1111/gfs.12332

    Article  Google Scholar 

  63. Tarré RM, Macedo R, Cantarutti RB, de Rezende C, P, Pereira JM, Ferreira E, Alves BJR, Urquiaga S, Boddey RM, (2001) The effect of the presence of a forage legume on nitrogen and carbon levels in soils under Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Plant Soil 234:15–26. https://doi.org/10.1023/A:1010533721740

    Article  Google Scholar 

  64. Thomas RJ, Asakawa NM (1993) Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol Biochem 25:1351–1361. https://doi.org/10.1016/0038-0717(93)90050-L

    CAS  Article  Google Scholar 

  65. Titgemeyer EC, Armendariz CK, Bindel DJ, Greenwood RH, Löest CA (2001) Evaluation of titanium dioxide as a digestibility marker for cattle. J Anim Sci 79:1059–1063. https://doi.org/10.2527/2001.7941059x

    CAS  Article  PubMed  Google Scholar 

  66. Unkovich M (2013) Isotope discrimination provides new insight into biological nitrogen fixation. New Phytol 198:643–646. https://doi.org/10.1111/nph.12227

    CAS  Article  PubMed  Google Scholar 

  67. USDA - United States Department of Agriculture (2019) Brazil once again becomes the world’s largest beef exporter. https://www.ers.usda.gov/amber-waves/2019/july/brazil-once-again-becomes-the-world-s-largest-beef-exporter/. Accessed 26 June 2020

  68. Viera-Vargas MS, De Oliveira OC, Souto CM, Cadisch G, Urquiaga S, Boddey RM (1995a) Use of different 15N labelling techniques to quantify the contribution of biological N2 fixation to legumes. Soil Biol Biochem 27:1185–1192. https://doi.org/10.1016/0038-0717(95)00033-B

    CAS  Article  Google Scholar 

  69. Viera-Vargas MS, Souto CM, Urquiaga S, Boddey RM (1995b) Quantification of the contribution of N2 fixation to tropical forage legumes and transfer to associated grass. Soil Biol Biochem 27:1193–1200. https://doi.org/10.1016/0038-0717(95)00022-7

    CAS  Article  Google Scholar 

  70. Villegas DM, Velasquez J, Arango J, Obregon K, Rao IM, Rosas G, Oberson A (2020) Urochloa grasses swap nitrogen source when grown in association with legume in tropical pastures. Diversity 12:419. https://doi.org/10.3390/d12110419

    CAS  Article  Google Scholar 

  71. Wagner GH, Wolf DC (1999) Carbon transformations and soil organic matter formation. In: Sylvia et al (ed) Principles and applications of soil microbiology. Prentice Hall, Englewood Cliffs, pp 218–258

  72. Wallis de Vries MF (1995) Estimating forage intake and quality in grazing cattle: a reconsiderarion of the hand-plucking method. Rangeland Ecol Manag 48:370–375

    Article  Google Scholar 

  73. Wang M, Pendall E, Fang C, Li B, Nie M (2018) A global perspective on agroecosystem nitrogen cycles after returning crop residue. Agric Ecosyst Environ 266:49–54. https://doi.org/10.1016/j.agee.2018.07.019

    CAS  Article  Google Scholar 

  74. Wang Y, Li FY, Song X, Wang X, Suri G, Baoyin T (2020) Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agric Ecosyst Environ 303:107–119. https://doi.org/10.1016/j.agee.2020.107119

    CAS  Article  Google Scholar 

  75. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. https://doi.org/10.1126/science.1094875

    CAS  Article  PubMed  Google Scholar 

  76. White SL, Sheffield RE, Washburn SP, King LD, Green JT Jr (2001) Spatial and time distribution of dairy cattle excreta in an intensive pasture system. J Environ Qual 30:2180–2187. https://doi.org/10.2134/jeq2001.2180

    CAS  Article  PubMed  Google Scholar 

  77. Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: Methods, estimates and future prospects. Soil Biol Biochem 40:30–48. https://doi.org/10.1016/j.soilbio.2007.08.010

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Minas Gerais Research Foundation (FAPEMIG), National Council for Scientific and Technological Development (CNPq), National Institute of Science and Technology in Animal Science (INCT-CA), and Coordination for the Improvement of Higher Education Personnel (CAPES). This document has been prepared with the financial support provided by FONTAGRO, the New Zealand Ministry for Primary Industries, and PROCISUR. The views expressed herein are exclusively those of the authors, and do not reflect the points of view of FONTAGRO and PROCISUR, their respectives Executive Boards, the Bank, the Sponsoring Institutions, or of the countries they represent. The authors thank the members of NEFOR (Brazilian Forage Team) for their contributions during the field trial setup. RMB gratefully acknowledges a "Productivity in Research" fellowship from CNPq and a research grant under the program "Cientista de Nosso Estado" from the Rio State Research Foundation (FAPERJ). The authors thank Carlos Mauricio Soares de Andrade and Judson Ferreira Valentim of Embrapa Acre for providing of the forage peanut seeds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Casagrande.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 844 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Homem, B.G.C., de Lima, I.B.G., Spasiani, P.P. et al. N-fertiliser application or legume integration enhances N cycling in tropical pastures. Nutr Cycl Agroecosyst (2021). https://doi.org/10.1007/s10705-021-10169-y

Download citation

Keywords

  • Arachis pintoi
  • Brachiaria
  • Fertilised pasture
  • Litter deposition and decomposition
  • Livestock excretion
  • Warm-season legume