Skip to main content

No sugar yield gains but larger fertiliser 15N loss with increasing N rates in an intensive sugarcane system

Abstract

High nitrogen (N) fertiliser inputs together with a low N use efficiency in intensive sugarcane systems indicate substantial losses of fertiliser N to the environment and therefore the need to reconsider N fertiliser rate management. However, the effect of N fertiliser rates on the fate of fertiliser N in plant and soil, and on N fertiliser loss is largely unknown. This study established the response of 15N fertiliser recoveries to N rates on a tropical commercial sugarcane farm in Australia on a Luvisol. The experiment over 10 months included three N fertiliser rates, 150, 200 (the recommended rate) and 250 kg N ha−1 applied as 15N-labelled urea (5 atom%) and a non-fertilised control. Fertiliser 15N uptake increased from 39 to 65 kg N ha−1 with increasing N rates, accounting for 26% of the N applied across N rates. Fertiliser 15N contributed 22–33% to total N uptake and increased soil-N uptake compared to the control. Fertiliser 15N in the soil down to 1.0 m at harvest was consistent across N rates (36–39 kg N ha−1), indicating a fixed capacity of the soil to immobilise fertiliser N. Increasing N rates did not contribute to increased sugar yield or retention of soil N but increased N fertiliser loss, ranging from 48 to 60% of the applied N. This study demonstrates that 50% of the applied N was lost from an intensive sugarcane system under current best management practices, highlighting the need to target these large environmental N losses in future recommendations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allen DE et al (2019) Nitrogen mineralisation in sugarcane soils in Queensland, Australia: I. evaluation of soil tests for predicting nitrogen mineralisation. Soil Res 57:738–754. https://doi.org/10.1071/sr19032

    CAS  Article  Google Scholar 

  2. Armour JD, Nelson PN, Daniells JW, Rasiah V, Inman-Bamber NG (2013) Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia. Agric Ecosyst Environ 180:68–78. https://doi.org/10.1016/j.agee.2012.05.007

    CAS  Article  Google Scholar 

  3. Basanta MV et al (2003) Management effects on nitrogen recovery in a sugarcane crop grown in Brazil. Geoderma 116:235–248. https://doi.org/10.1016/S0016-7061(03)00103-4

    CAS  Article  Google Scholar 

  4. Bell MJ, Garside AL (2014) Growth and yield responses to amending the sugarcane monoculture: Interactions between break history and nitrogen fertiliser. Crop Pasture Sci 65:287–299. https://doi.org/10.1071/CP13340

    Article  Google Scholar 

  5. Bell MJ et al (2014) A review of nitrogen use efficiency in sugarcane. Sugar Research Australia, Indooroopilly

    Google Scholar 

  6. Boschiero BN, Mariano E, Trivelin PCO (2018) “Preferential” ammonium uptake by sugarcane does not increase the 15N recovery of fertilizer sources. Plant Soil 429:253–269. https://doi.org/10.1007/s11104-018-3672-z

    CAS  Article  Google Scholar 

  7. Calcino DV, Schroeder BL, Hurney AP (2010) Extension and adoption of the ‘ SIX EASY STEPS ’ nutrient management program in sugarcane production in North Queensland. In: Proceedings of the international society of sugar cane technologists, vol 27, pp 1–10

  8. Chapman LS, Haysom MBC, Saffigna PG (1994) The recovery of 15N from labelled urea fertilizer in crop components of sugarcane and in soil profiles. Aust J Agric Res 45:1577–1585. https://doi.org/10.1071/AR9941577

    Article  Google Scholar 

  9. Courtaillac N, Baran R, Oliver R, Casabianca H, Ganry F (1998) Efficiency of nitrogen fertilizer in the sugarcane-vertical system in Guadeloupe according to growth and ratoon age of the cane. Nutr Cycl Agroecosyst 52:9–17. https://doi.org/10.1023/A:1009765302105

    Article  Google Scholar 

  10. da Silva NF et al (2020) Nitrogen utilization from ammonium nitrate and urea fertilizer by irrigated sugarcane in Brazilian Cerrado oxisol. Agriculture 10:323. https://doi.org/10.3390/agriculture10080323

    CAS  Article  Google Scholar 

  11. de Mendiburu F (2020) Agricolae: statistical procedures for agricultural research. R package version 1.3-5

  12. Dourado-Neto D et al (2010) Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc Am J 74:139–152. https://doi.org/10.2136/sssaj2009.0192

    CAS  Article  Google Scholar 

  13. Fortes C, Trivelin PCO, Vitti AC, Ferreira DA, Franco HCJ, Otto R (2011) Recovery of nitrogen (15N) by sugarcane from previous crop residues and urea fertilisation under a minimum tillage system. Sugar Tech 13:42–46. https://doi.org/10.1007/s12355-011-0074-4

    CAS  Article  Google Scholar 

  14. Fowler D et al (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368:20130165. https://doi.org/10.1098/rstb.2013.0164

    CAS  Article  Google Scholar 

  15. Franco HCJ, Otto R, Faroni CE, Vitti AC, Almeida de Oliveira EC, Trivelin PCO (2011) Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crops Res 121:29–41. https://doi.org/10.1016/j.fcr.2010.11.011

    Article  Google Scholar 

  16. Friedl J, Scheer C, Rowlings DW, Mumford MT, Grace PR (2017) The nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) reduces N2 emissions from intensively managed pastures in subtropical Australia. Soil Biol Biochem 108:55–64. https://doi.org/10.1016/j.soilbio.2017.01.016

    CAS  Article  Google Scholar 

  17. Friedl J, Kirkby R, Takeda N, De Rosa D, Rowlings DW, Grace PR (2021) Denitrification losses from a sugarcane soil—Impact of soil nitrate availability on the magnitude and partitioning of N2 and N2O emissions. Manuscript in Preparation

  18. Gava GJDC, Trivelin PCO, Vitti AC, De Oliveira MW (2005) Urea and sugarcane straw nitrogen balance in a soil-sugarcane crop system. Pesquisa Agropecuaria Brasileira 40:689–695. https://doi.org/10.1590/S0100-204X2005000700010

    Article  Google Scholar 

  19. Ghiberto PJ, Libardi PL, Trivelin PCO (2015) Nutrient leaching in an Ultisol cultivated with sugarcane. Agric Water Manag 148:141–149. https://doi.org/10.1016/j.agwat.2014.09.027

    Article  Google Scholar 

  20. Hart PBS, Rayner JH, Jenkinson DS (1986) Influence of pool substitution on the interpretation of fertilizer experiments with 15N. J Soil Sci 37:389–403. https://doi.org/10.1111/j.1365-2389.1986.tb00372.x

    CAS  Article  Google Scholar 

  21. Henzell E (1971) Recovery of nitrogen from four fertilizers applied to Rhodes grass in small plots. Aust J Exp Agric 11:420–430

    CAS  Article  Google Scholar 

  22. Huddell AM et al (2020) Meta-analysis on the potential for increasing nitrogen losses from intensifying tropical agriculture. Glob Chang Biol 26:1668–1680. https://doi.org/10.1111/gcb.14951

    Article  PubMed  Google Scholar 

  23. Isbell R (2016) The Australian soil classification. Australian soil and land survey handbooks series. CSIRO publishing, Clayton

    Google Scholar 

  24. Jenkinson D, Fox R, Rayner J (1985) Interactions between fertilizer nitrogen and soil nitrogen—the so-called ‘priming’effect. J Soil Sci 36:425–444. https://doi.org/10.1111/j.1365-2389.1985.tb00348.x

    CAS  Article  Google Scholar 

  25. Kuzyakov Y, Friedel J, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5

    CAS  Article  Google Scholar 

  26. Ladha JK, Pathak H, Krupnik TJ, Six J, van Kessel C (2005) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv Agron 87:85–156. https://doi.org/10.1016/S0065-2113(05)87003-8

    CAS  Article  Google Scholar 

  27. Lee M, Shevliakova E, Stock CA, Malyshev S, Milly PCD (2019) Prominence of the tropics in the recent rise of global nitrogen pollution. Nat Commun 10:1437. https://doi.org/10.1038/s41467-019-09468-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Li Y-R, Yang L-T (2015) Sugarcane agriculture and sugar industry in China. Sugar Tech 17:1–8. https://doi.org/10.1007/s12355-014-0342-1

    Article  Google Scholar 

  29. Li W, Guo S, Liu H, Zhai L, Wang H, Lei Q (2018) Comprehensive environmental impacts of fertilizer application vary among different crops: implications for the adjustment of agricultural structure aimed to reduce fertilizer use. Agric Water Manag 210:1–10. https://doi.org/10.1016/j.agwat.2018.07.044

    Article  Google Scholar 

  30. Liu X-JA, van Groenigen KJ, Dijkstra P, Hungate BA (2017) Increased plant uptake of native soil nitrogen following fertilizer addition-not a priming effect? Appl Soil Ecol 114:105–110. https://doi.org/10.1016/j.apsoil.2017.03.011

    Article  Google Scholar 

  31. Liu W, Yang H, Folberth C, Müller C, Ciais P, Abbaspour KC, Schulin R (2018) Achieving high crop yields with low nitrogen emissions in global agricultural input intensification. Environ Sci Technol 52:13782–13791. https://doi.org/10.1021/acs.est.8b03610

    CAS  Article  PubMed  Google Scholar 

  32. Lu CC, Tian H (2017) Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data 9:181. https://doi.org/10.5194/essd-9-181-2017

    Article  Google Scholar 

  33. McLellan EL et al (2018) The nitrogen balancing act: tracking the environmental performance of food production. Bioscience 68:194–203. https://doi.org/10.1093/biosci/bix164

    Article  PubMed  PubMed Central  Google Scholar 

  34. Meier EA, Thorburn PJ (2016) Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian Wet Tropical environments. Front Plant Sci 7:1–14. https://doi.org/10.3389/fpls.2016.01017

    Article  Google Scholar 

  35. Meier EA, Thorburn PJ, Wegener MK, Basford KE (2006) The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of North Queensland. Nutr Cycl Agroecosyst 75:101–114. https://doi.org/10.1007/s10705-006-9015-0

    CAS  Article  Google Scholar 

  36. Moore PH, Paterson AH, Tew T (2013) Sugarcane: the crop, the plan, and domestication. Sugarcane Physiol Biochem Func Biol. https://doi.org/10.1002/9781118771280.ch1

    Article  Google Scholar 

  37. Muchow R, Robertson M (1994) Relating crop nitrogen uptake to sugarcane yield. In: Proceedings of the Australian society of sugar cane technologists, Townsville, QLD. Australian Society of Sugar Cane Technologists, pp 122–130

  38. Mueller ND, West PC, Gerber JS, Macdonald GK, Polasky S, Foley JA (2014) A tradeoff frontier for global nitrogen use and cereal production. Environ Res Lett. https://doi.org/10.1088/1748-9326/9/5/054002

    Article  Google Scholar 

  39. Müller-Langer F, Majer S, O’Keeffe S (2014) Benchmarking biofuels—a comparison of technical, economic and environmental indicators. Energy Sustain Soc 4:20. https://doi.org/10.1186/s13705-014-0020-x

    Article  Google Scholar 

  40. Oliveira APP, Alves BJR, dos Anjos LHC, Lima E, Zonta E, Pereira W, Soares PFC (2017) Agronomic performance of green cane fertilized with ammonium sulfate in a coastal tableland soil. Bragantia 76:246–256. https://doi.org/10.1590/1678-4499.186

    CAS  Article  Google Scholar 

  41. Orton TG, Allen DE, Bloesch PM (2019) Nitrogen mineralisation in sugarcane soils in Queensland, Australia: II. From laboratory to field-based prediction. Soil Res 57:755. https://doi.org/10.1071/sr19032

    CAS  Article  Google Scholar 

  42. Otto R, Mulvaney RL, Khan SA, Trivelin PCO (2013) Quantifying soil nitrogen mineralization to improve fertilizer nitrogen management of sugarcane. Biol Fertil Soils 49:893–904. https://doi.org/10.1007/s00374-013-0787-5

    CAS  Article  Google Scholar 

  43. Otto R, Trivelin PCO, Franco HCJ, Faroni CE, Vitti AC (2009) Root system distribution of sugar cane as related to nitrogen fertilization, evaluated by two methods monolith and probes. Revista Brasileira de Ciência do Solo 33:601–611. https://doi.org/10.1590/S0100-06832009000300013

  44. Park SE, Webster TJ, Horan HL, James AT, Thorburn PJ (2010) A legume rotation crop lessens the need for nitrogen fertiliser throughout the sugarcane cropping cycle. Field Crops Res 119:331–341. https://doi.org/10.1016/j.fcr.2010.08.001

    Article  Google Scholar 

  45. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  46. Penuelas J, Janssens IA, Ciais P, Obersteiner M, Sardans J (2020) Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob Chang Biol 26:1962–1985. https://doi.org/10.1111/gcb.14981

    Article  Google Scholar 

  47. Prasertsak P, Freney JR, Denmead OT, Saffigna PG, Prove BG, Reghenzani JR (2002) Effect of fertilizer placement on nitrogen loss from sugarcane in tropical Queensland. Nutr Cycl Agroecosyst 62:229–239. https://doi.org/10.1023/A:1021279309222

    CAS  Article  Google Scholar 

  48. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing

  49. Rao A, Smith J, Papendick R, Parr J (1991) Influence of added nitrogen interactions in estimating recovery efficiency of labeled nitrogen. Soil Sci Soc Am J 55:1616–1621. https://doi.org/10.2136/sssaj1991.03615995005500060019x

    Article  Google Scholar 

  50. Rasiah V, Armour J, Nelson P (2013) Nitrate in shallow fluctuating groundwater under sugarcane: quantifying the lateral export quantities to surface waters. Agric Ecosyst Environ 180:103–110. https://doi.org/10.1016/j.agee.2012.07.002

    CAS  Article  Google Scholar 

  51. Reading LP, Bajracharya K, Wang J (2019) Simulating deep drainage and nitrate leaching on a regional scale: implications for groundwater management in an intensively irrigated area. Irrig Sci 37:561–581. https://doi.org/10.1007/s00271-019-00636-4

    Article  Google Scholar 

  52. Robinson N et al (2011) Nitrate paradigm does not hold up for sugarcane. PLoS ONE. https://doi.org/10.1371/journal.pone.0019045

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rowlings DW, Scheer C, Liu S, Grace PR (2016) Annual nitrogen dynamics and urea fertilizer recoveries from a dairy pasture using 15N; effect of nitrification inhibitor DMPP and reduced application rates. Agric Ecosyst Environ 216:216–225. https://doi.org/10.1016/j.agee.2015.09.025

    CAS  Article  Google Scholar 

  54. Roy RN, Finck A, Blair G, Tandon H (2006) Plant nutrition for food security—a guide for integrated nutrient management, vol 16. FAO, Rome

    Google Scholar 

  55. Schroeder B, Wood A, Moody P, Bell M, Garside A (2005) Nitrogen fertiliser guidelines in perspective. In: Proceedings of the Australian Society of Sugar Cane Technologists, vol 27, pp 291–304

  56. Schroeder B, Wood A, Sefton M, Hurney A, Skocaj D, Stainlay T, Moody P (2010a) District yield potential: an appropriate basis for nitrogen guidelines for sugarcane production. In: Proceedings of the Australian Society of Sugar Cane Technologists, vol 32, pp 193–209

  57. Schroeder BL, Hurney AP, Wood AW, Moody PW (2010b) Allsopp PG Concepts and value of the nitrogen guidelines contained in the Australian sugar industry's ‘Six Easy Steps’ nutrient management program. In: Proceedings of the International Society of Sugar Cane Technologists, vol 27, pp 1–13

  58. Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci USA 111:9199–9204. https://doi.org/10.1073/pnas.1322434111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Silva-Olaya AM, Davies CA, Cerri CEP, Allen DJ, Mello FFC, Cerri CC (2017) Quantifying above and belowground biomass carbon inputs for sugar-cane production in Brazil. Soil Res 55:640–648. https://doi.org/10.1071/SR16090

    Article  Google Scholar 

  60. Skocaj DM, Everingham YL, Schroeder BL (2013) Nitrogen management guidelines for sugarcane production in Australia: Can these be modified for Wet Tropical conditions using seasonal climate forecasting? Springer Sci Rev 1:51–71. https://doi.org/10.1007/s40362-013-0004-9

    Article  Google Scholar 

  61. Stewart LK, Charlesworth PB, Bristow KL, Thorburn PJ (2006) Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM. Agric Water Manag 81:315–334. https://doi.org/10.1016/j.agwat.2005.05.002

    Article  Google Scholar 

  62. Sugar Research Australia (2014) Harvesting best practice manual. Sugar Research Australia, Indooroopilly

    Google Scholar 

  63. Takeda N, Friedl J, Rowlings D, De Rosa D, Scheer C, Grace P (2021) Exponential response of nitrous oxide (N2O) emissions to increasing nitrogen fertiliser rates in a tropical sugarcane cropping system. Agric Ecosyst Environ 313:107376. https://doi.org/10.1016/j.agee.2021.107376

    CAS  Article  Google Scholar 

  64. Thorburn PJ, Biggs JS, Attard SJ, Kemei J (2011) Environmental impacts of irrigated sugarcane production: nitrogen lost through runoff and leaching. Agric Ecosyst Environ 144:1–12. https://doi.org/10.1016/j.agee.2011.08.003

    CAS  Article  Google Scholar 

  65. Thorburn PJ, Biggs JS, Palmer J, Meier EA, Verburg K, Skocaj DM (2017) Prioritizing crop management to increase nitrogen use efficiency in Australian sugarcane crops. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.01504

    Article  Google Scholar 

  66. Tian H et al (2019) Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob Chang Biol 25:640–659. https://doi.org/10.1111/gcb.14514

    Article  PubMed  Google Scholar 

  67. Vallis I, Catchpoole VR, Hughes RM, Myers RJK, Ridge R, Weier KL (1996) Recovery in plants and soils of 15N applied as subsurface bands of urea to sugarcane. Aust J Agric Res 47:355–370. https://doi.org/10.1071/AR9960355

    Article  Google Scholar 

  68. Versini A, Poultney D, Bachir H, Février A, Paillat J (2020) Effect of nitrogen fertilisation on sugarcane root development and nitrogen accumulation in ratoon crops of Reunion Island. Sugar Tech 22:1110–1121. https://doi.org/10.1007/s12355-020-00863-6

    CAS  Article  Google Scholar 

  69. Vieira-Megda MX et al (2015) Contribution of fertilizer nitrogen to the total nitrogen extracted by sugarcane under Brazilian field conditions. Nutr Cycl Agroecosyst 101:241–257. https://doi.org/10.1007/s10705-015-9676-7

    CAS  Article  Google Scholar 

  70. Wallace AJ, Armstrong RD, Grace PR, Scheer C, Partington DL (2020) Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutr Cycl Agroecosyst 116:41–56. https://doi.org/10.1007/s10705-019-10028-x

    CAS  Article  Google Scholar 

  71. Weng Z et al (2020) Priming of soil organic carbon induced by sugarcane residues and its biochar control the source of nitrogen for plant uptake: A dual 13C and 15N isotope three-source-partitioning study. Soil Biol Biochem 146:107792. https://doi.org/10.1016/j.soilbio.2020.107792

    CAS  Article  Google Scholar 

  72. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Series B Stat Methodol 73:3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x

    Article  Google Scholar 

  73. Zhao Z, Verburg K, Huth N (2017) Modelling sugarcane nitrogen uptake patterns to inform design of controlled release fertiliser for synchrony of N supply and demand. Field Crops Res 213:51–64. https://doi.org/10.1016/j.fcr.2017.08.001

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by Sugar Research Australia and Queensland University of Technology. The authors would like to thank Farmacist for their assistance and Richard Kelly for the use of their property as a research site. Some of the data reported in this paper were obtained at the Central Analytical Research Facility at Queensland University of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johannes Friedl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 135 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takeda, N., Friedl, J., Rowlings, D. et al. No sugar yield gains but larger fertiliser 15N loss with increasing N rates in an intensive sugarcane system. Nutr Cycl Agroecosyst 121, 99–113 (2021). https://doi.org/10.1007/s10705-021-10167-0

Download citation

Keywords

  • Fertiliser N recovery
  • N uptake efficiency
  • NUE
  • Soil fertility