Skip to main content

Nitrous oxide emission factors in conventionally and naturally simulated cattle urine patches

A Correction to this article was published on 07 October 2021

This article has been updated

Abstract

We quantified nitrous oxide emission factors (N2O EFs) for cattle urine patches established using two simulation methods: (1) a uniformly wetted area (UWA) and (2) a naturally expanding effective area (NEEA). Field experiments were conducted on long-term grasslands in New Zealand (NZ1 and NZ2) and Ireland (IRE) for varying urine nitrogen (N) application rates in two initial soil moisture regimes (below field capacity and field capacity). Nitrous oxide emissions were measured using static chambers for a period of 120, 133 and 85 days at NZ1, NZ2 and IRE, respectively. Nitrous oxide EFs were unaffected by patch type (UWA = 0.99%; NEEA = 1.07%) across varying urine N application rates in NZ1 whereas in NZ2, EFs varied with urine N application rate only for the NEEA patches in below field capacity soils (P < 0.05). In IRE, we observed a ~ fourfold difference in the mean N2O EF between the UWA (0.67 ± 0.24%) and NEEA (0.18 ± 0.04%) patches in below field capacity soils (P < 0.05) but no significant differences in EFs were detected between the UWA (0.75 ± 0.14%) and NEEA (0.53 ± 0.08%) patches at field capacity soils. Our study suggests that patch simulation method and initial soil water content can independently affect N2O EFs in urine-affected pasture but factor effects may be largely site and/or soil specific.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

References

  1. Adhikari KP, Saggar S, Hanly JA, Guinto DF (2020) Urease inhibitors reduced ammonia emissions from cattle urine applied to pasture soil. Nutr Cycl Agroecosyst 117:317–335. https://doi.org/10.1007/s10705-020-10070-0

    CAS  Article  Google Scholar 

  2. Ambus P, Petersen SO, Soussana JF (2007) Short-term carbon and nitrogen cycling in urine patches assessed by combined carbon-13 and nitrogen-15 labelling. Agric Ecosyst Environ 121(1–2):84–92. https://doi.org/10.1016/j.agee.2006.12.007

    CAS  Article  Google Scholar 

  3. Anger M, Hoffmann C, Kühbauch W (2003) Nitrous oxide emissions from artificial urine patches applied to different N-fertilized swards and estimated annual N2O emissions for differently fertilized pastures in an upland location in Germany. Soil Use Manag 19(2):104–111. https://doi.org/10.1111/j.1475-2743.2003.tb00288.x

    Article  Google Scholar 

  4. Ball R, Keeney DR, Thoebald PW, Nes P (1979) Nitrogen balance in urine-affected areas of a New Zealand pasture 1. Agron J 71(2):309–314. https://doi.org/10.2134/agronj1979.00021962007100020022x

    CAS  Article  Google Scholar 

  5. Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41(6):379–388. https://doi.org/10.1007/s00374-005-0858-3

    CAS  Article  Google Scholar 

  6. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1): 1–48. https://doi.org/10.18637/jss.v067.i01

  7. Bronson KF, Sparling GP, Fillery IRP (1999) Short-term N dynamics following application of 15N-labeled urine to a sandy soil in summer. Soil Biol Biochem 31(7):1049–1057. https://doi.org/10.1016/S0038-0717(99)00019-X

  8. Buckthought LE, Clough TJ, Cameron KC, Di HJ, Shepherd MA (2016) Plant N uptake in the periphery of a bovine urine patch: determining the ‘effective area.’ N Z J Agric Res 59(2):122–140. https://doi.org/10.1080/00288233.2015.1134589

    CAS  Article  Google Scholar 

  9. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc B 368(1621):20130122. https://doi.org/10.1098/rstb.2013.0122

    CAS  Article  Google Scholar 

  10. Carter MS (2007) Contribution of nitrification and denitrification to N2O emissions from urine patches. Soil Biol Biochem 39(8):2091–2102. https://doi.org/10.1016/j.soilbio.2007.03.013

    CAS  Article  Google Scholar 

  11. Chadwick DR, Cardenas L, Misselbrook TH, Smith KA, Rees RM, Watson CJ, McGeough KL, Williams JR, Cloy JM, Thorman RE, Dhanoa MS (2014) Optimizing chamber methods for measuring nitrous oxide emissions from plot-based agricultural experiments. Eur J Soil Sci 65(2):295–307. https://doi.org/10.1111/ejss.12117

    CAS  Article  Google Scholar 

  12. Chadwick DR, Cardenas LM, Dhanoa MS, Donovan N, Misselbrook T, Williams JR, Thorman RE, McGeough KL, Watson CJ, Bell M, Anthony SG, Rees RM (2018) The contribution of cattle urine and dung to nitrous oxide emissions: quantification of country specific emission factors and implications for national inventories. Sci Total Environ 635:607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chalk PM, Inácio CT, Chen D (2020) Tracing the dynamics of animal excreta N in the soil-plant-atmosphere continuum using 15N enrichment. Adv Agron 160(1):187–247. https://doi.org/10.1016/bs.agron.2019.10.004

    Article  Google Scholar 

  14. Charteris AF, Chadwick DR, Thorman RE, Vallejo A, de Klein CA, Rochette P, Cárdenas LM (2020) Global Research Alliance N2O chamber methodology guidelines: recommendations for deployment and accounting for sources of variability. J Environ Qual 49(5):1092–1109. https://doi.org/10.1002/jeq2.20126

    CAS  Article  PubMed  Google Scholar 

  15. Clough TJ, Ledgard SF, Sprosen MS, Kear MJ (1998) Fate of 15 N labelled urine on four soil types. Plant Soil 199(2):195–203. https://doi.org/10.1023/A:1004361009708

    CAS  Article  Google Scholar 

  16. Clough TJ, Lanigan GJ, de Klein CA, Samad MS, Morales SE, Rex D, Bakken LR, Johns C, Condron LM, Grant J, Richards KG (2017) Influence of soil moisture on codenitrification fluxes from a urea-affected pasture soil. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-02278-y

    CAS  Article  Google Scholar 

  17. Clough TJ, Cardenas LM, Friedl J, Wolf B (2020) Nitrous oxide emissions from ruminant urine: science and mitigation for intensively managed perennial pastures. Curr Opin Environ Sustain 47:21–27. https://doi.org/10.1016/j.cosust.2020.07.001

    Article  Google Scholar 

  18. da Silva Cardos A, Alves BJR, Urquiaga S, Boddey RM (2018) Effect of volume of urine and mass of faeces on N2O and CH4 emissions of dairy-cow excreta in a tropical pasture. Anim Prod Sci 58(6):1079–1086. https://doi.org/10.1071/AN15392

    CAS  Article  Google Scholar 

  19. de Klein C, Barton L, Sherlock R, Li Z, Littlejohn RP (2003) Estimating a nitrous oxide emission factor for animal urine from some New Zealand pastoral soils. Aust J Soil Res 41:381–399. https://doi.org/10.1071/SR02128

    Article  Google Scholar 

  20. de Klein CA, Alfaro MA, Giltrap D, Topp CF, Simon PL, Noble A, van der Weerden TJ (2020) Global Research Alliance N2O chamber methodology guidelines: statistical considerations, emission factor calculation, and data reporting. J Environ Qual 49(5):1156–1167. https://doi.org/10.2134/jeq2003.1405

    Article  PubMed  Google Scholar 

  21. Decau ML, Simon JC, Jacquet A (2003) Fate of urine nitrogen in three soils throughout a grazing season. J Environ Qual 32(4):1405–1413

    CAS  Article  Google Scholar 

  22. Deenen PJAG, Middelkoop N (1992) Effects of cattle dung and urine on nitrogen uptake and yield of perennial ryegrass. Neth J Agri Sci 40(4):469–482

  23. Doak BW (1952) Some chemical changes in the nitrogenous constituents of urine when voided on pasture. J Agric Sci 42(1–2):162–171. https://doi.org/10.1017/S0021859600058767

    CAS  Article  Google Scholar 

  24. Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soils. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Willey, New York, pp 7–21

    Google Scholar 

  25. Fischer K, Burchill W, Lanigan GJ, Kaupenjohann M, Chambers BJ, Richards KG, Forrestal PJ (2016) Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland. Soil Use Manag 32:83–91. https://doi.org/10.1111/sum.12203

    Article  Google Scholar 

  26. Forrestal PJ, Krol DJ, Lanigan GJ, Jahangir MMR, Richards KG (2017) An evaluation of urine patch simulation methods for nitrous oxide emission measurement. J Agric Sci 155(5):725–732. https://doi.org/10.1017/S0021859616000939

    CAS  Article  Google Scholar 

  27. Fraser PM, Cameron KC, Sherlock RR (1994) Lysimeter study of the fate of nitrogen in animal urine returns to irrigated pasture. Eur J Soil Sci 45(4):439–447. https://doi.org/10.1111/j.1365-2389.1994.tb00529.x

    CAS  Article  Google Scholar 

  28. Haynes RJ, Williams PH (1993) Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv Agron 49:119–199. https://doi.org/10.1016/S0065-2113(08)60794-4

    CAS  Article  Google Scholar 

  29. Hedley CB, Saggar S, Tate KR (2006) Procedure for fast simultaneous analysis of the greenhouse gases: methane, carbon dioxide and nitrous oxide in air samples. Commun Soil Sci Plant Anal 37:1501–1510. https://doi.org/10.1080/00103620600709928

    CAS  Article  Google Scholar 

  30. Hoogendoorn C, Saggar S, Palmada T, Berben P (2018) Do nitrous oxide emissions from urine deposited naturally differ from evenly applied urine? In: Currie LD, Christensen CL (eds) Farm environmental planning—science, policy and practice. Occasional Report No. 31. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. 9 pages. http://flrc.massey.ac.nz/publications.html

  31. Hu HW, Chen D, He JZ (2015) Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev 39(5):729–749. https://doi.org/10.1093/femsre/fuv021

    CAS  Article  PubMed  Google Scholar 

  32. IPCC (2006) Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. In: De Klein C, Novoa RSA, Ogle S, Smith KA, Rochette P, Wirth TC, McConkey BG, Mosier A, Rypdal K (eds) Intergovernmental panel on climate change, 2006. Guidelines for National Greenhouse Gas Inventories Agriculture, Forestry and Other Land Use Intergovernmental Panel on Climate Change. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O&CO2.pdf. Accessed 10 Feb 2021

  33. IPCC (2019) N2O emissions from managed soils, and CO2 emissions from lime and urea application. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch11_Soils_N2O_CO2.pdf

  34. Jolly B, Saggar S, Luo J, Bates G, Smith D, Bishop P, Berben P, Lindsey S (2019) Technologies for mapping cow urine patches: a comparison of thermal imagery, drone imagery, and soil conductivity with Spikey-R. In: Currie LD, Christensen CL (eds) Nutrient loss mitigations for compliance in agriculture. http://flrc.massey.ac.nz/publications.html. Occasional Report No. 32. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. p 10

  35. Kool DM, Dolfing J, Wrage N, van Groenigen JW (2011) Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem 43(1):174–178. https://doi.org/10.1016/j.soilbio.2010.09.030

    CAS  Article  Google Scholar 

  36. Koops JG, Van Beusichem ML, Oenema O (1997) Nitrous oxide production, its source and distribution in urine patches on grassland on peat soil. Plant Soil 191(1):57–65. https://doi.org/10.1023/A:1004285221368

    CAS  Article  Google Scholar 

  37. Krol DJ, Carolan R, Minet E, McGeough KL, Watson CJ, Forrestal PJ, Lanigan GJ, Richards KG (2016) Improving and disaggregating N2O emission factors for ruminant excreta on temperate pasture soils. Sci Total Environ 568:327–338. https://doi.org/10.1016/j.scitotenv.2016.06.016

    CAS  Article  PubMed  Google Scholar 

  38. Kuznetsova A, Brockhoff PB, Christensen RH (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(1):1–26. https://doi.org/10.18637/jss.v082.i13

  39. Lenth R (2019) Emmeans: estimated marginal means, aka least-squares means. R package version 1.3.2. Available online at: https://CRAN.R-project.org/package=emmeans

  40. Lambie SM, Schipper LA, Balks MR, Baisden WT (2012) Solubilisation of soil carbon following treatment with cow urine under laboratory conditions. Soil Res 50(1):50–57. https://doi.org/10.1071/SR11195

    Article  Google Scholar 

  41. LECO Corporation (2003) Total/organic carbon and nitrogen in soils. LECO Corporation, St. Joseph, MO, Organic Application Note 203-821-165

  42. Leterme P, Barre C, Vertes F (2003) The fate of 15N from dairy cow urine under pasture receiving different rates of N fertiliser. Agronomy 23:609–616. https://doi.org/10.1051/agro:2003038

    CAS  Article  Google Scholar 

  43. Li FY, Betteridge K, Cichota R, Hoogendoorn CJ, Jolly BH (2012) Effects of nitrogen load variation in animal urination events on nitrogen leaching from grazed pasture. Agric Ecosyst Environ 159:81–89. https://doi.org/10.1016/j.agee.2012.07.003

    CAS  Article  Google Scholar 

  44. López-Aizpún M, Horrocks CA, Charteris AF, Marsden KA, Ciganda VS, Evans JR, Cárdenas LM (2020) Meta-analysis of global livestock urine-derived nitrous oxide emissions from agricultural soils. Glob Change Biol 26(4):2002–2013

    Article  Google Scholar 

  45. Lotero J, Woodhouse WW, Petersen RG (1966) Local effect on fertility of urine voided by grazing cattle 1. Agron J 58(3):262–265. https://doi.org/10.2134/agronj1966.00021962005800030005x

    Article  Google Scholar 

  46. Luo J, Saggar S, Bhandral R, Bolan N, Ledgard S, Lindsey S, Sun W (2008) Effects of irrigating dairy-grazed grassland with farm dairy effluent on nitrous oxide emissions. Plant Soil 309(1–2):119–130. https://doi.org/10.1007/s11104-008-9550-3

    CAS  Article  Google Scholar 

  47. Luo J, Wyatt J, van der Weerden TJ, Thomas SM, de Klein CAM, Rollo M, Li Y, Lindsey S, Ledgard SF, Li J, Ding W, Qin S, Zhang N, Bloan N, Kirkham MB, Bai Z, Zhang X, Wang H, Liu H, Rys G (2017) Potential hotspot areas of nitrous oxide emissions from grazed pastoral dairy farm systems. Adv Agron 145:205–268. https://doi.org/10.1016/bs.agron.2017.05.006

    Article  Google Scholar 

  48. Maire J, Krol D, Pasquier D, Cowan N, Skiba U, Rees RM, Reay D, Lanigan GJ, Richards KG (2020) Nitrogen fertiliser interactions with urine deposit affect nitrous oxide emissions from grazed grasslands. Agric Ecosyst Environ 290:106784. https://doi.org/10.1016/j.agee.2019.106784

    CAS  Article  Google Scholar 

  49. Marsden KA, Jones DL, Chadwick DR (2016) The urine patch diffusional area: an important N2O source? Soil Biol Biochem 92:161–170. https://doi.org/10.1016/j.soilbio.2015.10.011

    CAS  Article  Google Scholar 

  50. Minet EP, Ledgard SF, Lanigan GJ, Murphy JB, Grant J, Hennessy D, Lewis E, Forrestal PJ, Richards KG (2016) Mixing dicyandiamide (DCD) with supplementary feeds for cattle: an effective method to deliver a nitrification inhibitor in urine patches. Agric Ecosyst Environ 231:114–121. https://doi.org/10.1016/j.agee.2016.06.033

    CAS  Article  Google Scholar 

  51. Moir JL, Cameron KC, Di HJ, Fertsak U (2011) The spatial coverage of dairy cattle urine patches in an intensively grazed pasture system. J Agric Sci 149(4):473–485. https://doi.org/10.1017/S0021859610001012

    Article  Google Scholar 

  52. Monaghan RM, Barraclough D (1993) Nitrous oxide and dinitrogen emissions from urine-affected soil under controlled conditions. Plant Soil 151(1):127–138. https://doi.org/10.1007/BF00010793

    CAS  Article  Google Scholar 

  53. Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72(1):51–65. https://doi.org/10.1007/s10705-004-7354-2

    CAS  Article  Google Scholar 

  54. Orwin KH, Bertram JE, Clough TJ, Condron LM, Sherlock RR, O’Callaghan M (2009) Short-term consequences of spatial heterogeneity in soil nitrogen concentrations caused by urine patches of different sizes. Appl Soil Ecol 42(3):271–278. https://doi.org/10.1016/j.apsoil.2009.05.002

    Article  Google Scholar 

  55. Owens J, Clough TJ, Laubach J, Hunt JE, Venterea RT, Phillips RL (2016) Nitrous oxide fluxes, soil oxygen, and denitrification potential of urine-and non-urine-treated soil under different irrigation frequencies. J Environ Qual 45(4):1169–1177. https://doi.org/10.2134/jeq2015.10.0516

    CAS  Article  PubMed  Google Scholar 

  56. Podolyan A, Di HJ, Cameron KC, Clough T, de Klein C, Saggar S (2014) Ammonia oxidising populations and relationships with N2O emissions in three New Zealand soils. N Z J Agric Res 57(3):228–243. https://doi.org/10.1080/00288233.2014.924969

    Article  Google Scholar 

  57. Rochette P, Chantigny MH, Ziadi N, Angers DA, Bélanger G, Charbonneau É, Pellerin D, Liang C, Bertrand N (2014) Soil nitrous oxide emissions after deposition of dairy cow excreta in eastern Canada. J Environ Qual 43(3):829–841. https://doi.org/10.2134/jeq2013.11.0474

    CAS  Article  PubMed  Google Scholar 

  58. Ryan M, Noonan D, Fanning A (1998) Relative denitrification rates in surface and subsurface layers of a mineral soil. Irish J Agric Food Res 37(2):141–157

    Google Scholar 

  59. Saarijärvi K, Virkajärvi P (2009) Nitrogen dynamics of cattle dung and urine patches on intensively managed boreal pasture. J Agric Sci 147(4):479. https://doi.org/10.1017/S0021859609008727

    CAS  Article  Google Scholar 

  60. Saggar S, Andrew RM, Tate KR, Hedley CB, Rodda NJ, Townsend JA (2004a) Modelling nitrous oxide emissions from dairy grazed pastures. Nutr Cycl Agroecosyst 68:243–255. https://doi.org/10.1023/B:FRES.0000019463.92440.a3

    CAS  Article  Google Scholar 

  61. Saggar S, Bolan NS, Bhandral R, Hedley CB, Luo J (2004b) A review of emissions of methane, ammonia, and nitrous oxide from animal excreta deposition and farm effluent application in grazed pastures. N Z J Agric Res 47(4):513–544. https://doi.org/10.1080/00288233.2004.9513618

    CAS  Article  Google Scholar 

  62. Saggar S, Bolan N, Singh J, Blard A (2005) Economic and environmental impacts of increased nitrogen use in grazed pastures and the role of inhibitors in mitigating nitrogen losses. NZAS 62:62–67

    Google Scholar 

  63. Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL, Kim DG, Zaman M, Tillman RW (2013) Denitrification and N2O:N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Sci Total Environ 465:173–195. https://doi.org/10.1016/j.scitotenv.2012.11.050

    CAS  Article  PubMed  Google Scholar 

  64. Saunders WHM (1982) Effects of cow urine and its major constituents on pasture properties. N Z J Agric Res 25(1):61–68. https://doi.org/10.1080/00288233.1982.10423373

    Article  Google Scholar 

  65. Selbie DR, Cameron KC, Di HJ, Moir JL, Lanigan GJ, Richards KG (2014) The effect of urinary nitrogen loading rate and a nitrification inhibitor on nitrous oxide emissions from a temperate grassland soil. J Agric Sci 152(S1):159. https://doi.org/10.1017/S0021859614000136

    CAS  Article  Google Scholar 

  66. Selbie DR, Buckthought LE, Shepherd MA (2015a) The challenge of the urine patch for managing nitrogen in grazed pasture systems. Adv Agron 129:229–292. https://doi.org/10.1016/bs.agron.2014.09.004

    Article  Google Scholar 

  67. Selbie DR, Lanigan GJ, Laughlin RJ, Di HJ, Moir JL, Cameron KC, Clough TJ, Watson CJ, Grant J, Somers C, Richards KG (2015b) Confirmation of co-denitrification in grazed grassland. Sci Rep 5(1):1–9. https://doi.org/10.1038/srep17361

    CAS  Article  Google Scholar 

  68. Sherlock RR, Goh KM (1984) Dynamics of ammonia volatilization from simulated urine patches and aqueous urea applied to pasture I. Field Experiments. Fert Res 5(2):181–195. https://doi.org/10.1007/BF01052715

    Article  Google Scholar 

  69. Singh J, Saggar S, Bolan NS (2009) Influence of dicyandiamide on nitrogen transformation and losses in cow-urine-amended soil cores from grazed pasture. Anim Prod Sci 49(3):253–261

  70. Singh BP, Mehra P, Fang Y, Dougherty W, Saggar S (2021) Nitrous oxide emissions from cow urine patches in an intensively managed grassland: influence of nitrogen loading under contrasting soil moisture. Sci Total Environ 757:143790

    CAS  Article  Google Scholar 

  71. Smith KA (2017) Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales. Eur J Soil Sci 68(2):137–155. https://doi.org/10.1111/ejss.12409

    CAS  Article  Google Scholar 

  72. Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11(3):261–267. https://doi.org/10.1016/0038-0717(79)90071-3

    CAS  Article  Google Scholar 

  73. Sordi A, Dieckow J, Bayer C, Alburquerque MA, Piva JT, Zanatta JA, Tomazi M, da Rosa CM, de Moraes A (2014) Nitrous oxide emission factors for urine and dung patches in a subtropical Brazilian pastureland. Agric Ecosyst Environ 190:94–103

    CAS  Article  Google Scholar 

  74. van der Weerden TJ, Luo J, de Klein CA, Hoogendoorn CJ, Littlejohn RP, Rys GJ (2011) Disaggregating nitrous oxide emission factors for ruminant urine and dung deposited onto pastoral soils. Agric Ecosyst Environ 141(3–4):426–436. https://doi.org/10.1016/j.agee.2011.04.007

    CAS  Article  Google Scholar 

  75. van der Weerden TJ, Noble AN, Luo J, de Klein CAM, Saggar S, Giltrap D, Gibbs J, Rys G (2020) Meta-analysis of nitrous oxide emission factors from ruminant excreta deposited onto New Zealand pastures. Sci Total Environ 732:139235. https://doi.org/10.1016/j.scitotenv.2020.139235

    CAS  Article  PubMed  Google Scholar 

  76. van Groenigen JW, Kuikman PJ, de Groot WJ, Velthof GL (2005) Nitrous oxide emission from urine-treated soil as influenced by urine composition and soil physical conditions. Soil Biol Biochem 37(3):463–473. https://doi.org/10.1016/j.soilbio.2004.08.009

    CAS  Article  Google Scholar 

  77. Venterea RT, Coulter JA, Clough TJ (2020) Nitrite accumulation and nitrogen gas production increase with decreasing temperature in urea-amended soils: experiments and modeling. Soil Biol Biochem 142:107727

    CAS  Article  Google Scholar 

  78. Voglmeier K, Six J, Jocher M, Ammann C (2019) Grazing-related nitrous oxide emissions: from patch scale to field scale. Biogeosciences 16(8):1685–1703. https://doi.org/10.5194/bg-16-1685-2019

    CAS  Article  Google Scholar 

  79. White-Leech R, Liu K, Sollenberger LE, Woodard KR, Interrante SM (2013) Excreta deposition on grassland patches. I. Forage harvested, nutritive value, and nitrogen recovery. Crop Sci 53(2):688–695. https://doi.org/10.2135/cropsci2012.07.0407

    Article  Google Scholar 

  80. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org

  81. Williams PH, Haynes RJ (1994) Comparison of initial wetting pattern, nutrient concentrations in soil solution and the fate of 15 N-labelled urine in sheep and cattle urine patch areas of pasture soil. Plant Soil 162(1):49–59. https://doi.org/10.1007/BF01416089

    CAS  Article  Google Scholar 

  82. Wrage-Mönnig N, Horn MA, Well R, Müller C, Velthof G, Oenema O (2018) The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol Biochem 123:A3–A16. https://doi.org/10.1016/j.soilbio.2018.03.020

    CAS  Article  Google Scholar 

  83. Yamulki S, Jarvis SC, Owen P (1998) Nitrous oxide emissions from excreta applied in a simulated grazing pattern. Soil Biol Biochem 30(4):491–500. https://doi.org/10.1016/S0038-0717(97)00145-4

    CAS  Article  Google Scholar 

  84. Zaman M, Saggar S, Blennerhassett JD, Singh J (2009) Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol Biochem 41(6):1270–1280. https://doi.org/10.1016/j.soilbio.2009.03.011

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the New Zealand Government to support the objectives of the Global Research Alliance on Agricultural Greenhouse Gases. The authors would like to thank technical and laboratory staff at Massey University, AgResearch Ruakura Hamilton, Elizabeth Macarthur Agricultural Institute and Teagasc Johnstown Castle for their technical support. We thank Dr. Donna Giltrap, Dr. Kamal Adhikari, Damian Collins, and the anonymous reviewers for their insightful comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. O’Neill.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 91 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Neill, M., Saggar, S., Richards, K.G. et al. Nitrous oxide emission factors in conventionally and naturally simulated cattle urine patches. Nutr Cycl Agroecosyst (2021). https://doi.org/10.1007/s10705-021-10162-5

Download citation

Keywords

  • Nitrous oxide
  • Emission factor
  • NUE
  • Cattle urine
  • Patch simulation method
  • Grazed pasture