Skip to main content

Nitrous oxide emissions from enhanced-efficiency nitrogen fertilizers applied to annual crops in a subtropical ecosystem

Abstract

In this study, we assessed the potential of enhanced-efficiency nitrogen (EEN) fertilizers for mitigating nitrous oxide (N2O) emissions and compared it with that of common urea. N2O-N emission factor (EF-N2O, % applied N emitted as N2O-N) and yield-scaled N2O-N emissions (N2O-N emitted per yield unit) for wheat, bean and black oat were determined in southern Brazil. Four EEN fertilizers were evaluated for comparison with common urea, namely: urea with urease inhibitor (Ur-NBPT), urea coated with an inorganic polymer (Ur-pol), ammonium nitrate (Nitrate), urea treated with copper and boron polymer (Ur-CuB) and control treatment with no N fertilizer. The first two EEN fertilizers were applied to all crops, the third only to wheat and the fourth to bean and black oat. None of the EEN fertilizers reduced N2O-N emissions or increased crop yields relative to common urea in winter wheat or black oat. By contrast, Ur-pol and Ur-CuB reduced N2O-N emissions in summer bean by 41 and 39%, respectively, and Ur-pol increased grain yield by 40%, relative to common urea. Although the Ur-NBPT proved efficient in decreasing soil N2O-N fluxes at an early stage, no effect was observed in the mid or long term (> 12 days) and, thus, the effect on total N2O-N emissions was not significant. Our findings testify to the potential of some EEN fertilizers for decreasing N2O-N yield-scaled emissions in summer crop seasons relative to common urea, the effect having no considerable impact under the mild winter conditions. EF-N2O-N averaged 0.87 ±  0.40% across crop seasons (ranging from 0.44 to 1.45%).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adhikari KP, Saggar S, Hanly JA, Guinto DF, Taylor MD (2018) Why copper and zinc are ineffective in reducing soil urease activity in New Zealand dairy-grazed pasture soils. Soil Res 56:491–502. https://doi.org/10.1071/SR17278

    CAS  Article  Google Scholar 

  2. Aita C, Tonetto F, Gonzatto R, Pujol SB, Schirmann J, Depoi JS, Mezzalira AP, Hochscheid M, Zirbes E, Giacomini SJ (2018) Nitrous oxide emissions in a wheat/corn succession combining dairy slurry and urea as nitrogen sources. Rev Bras Ciênci Solo 42:e0170138. https://doi.org/10.1590/18069657rbcs20170138

    CAS  Article  Google Scholar 

  3. Akiyama H, Yan X, Yagi K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob Change Biol 16:1837–1846. https://doi.org/10.1111/j.1365-2486.2009.02031.x

    Article  Google Scholar 

  4. Alfaro M, Salazar F, Hube S, Ramírez L, Mora MS (2018) Ammonia and nitrous oxide emissions as affected by nitrification and urease inhibitors. J Soil Sci Plant Nutr 18:79–486. https://doi.org/10.4067/S0718-95162018005001501

    Article  Google Scholar 

  5. Alvarez CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  6. An H, Owens J, Beres B, Li Y, Xi H (2021) Nitrous oxide emissions with enhanced efficiency and conventional urea fertilizers in winter wheat. Nutr Cycl Agroecosyst. https://doi.org/10.1007/s10705-021-10118-9

    Article  Google Scholar 

  7. Anda-Associação Nacional para Difusão de Adubos (2018) Consumo aparente de fertilizantes e matérias-primas em 2017. http://anda.org.br/. Acessed 19 Mar 2020

  8. Baggs EM, Chebii J, Ndufa JK (2006) A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya. Soil Tillage Res 90:69–76. https://doi.org/10.1016/j.still.2005.08.006

    Article  Google Scholar 

  9. Barton L, Wolf B, Rowlings D, Scheer C, Kiese R, Grace P, Stefanova K, Butterbach-Bahl K (2015) Sampling frequency affects estimates of annual nitrous oxide fluxes. Sci Rep. https://doi.org/10.1038/srep15912

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388. https://doi.org/10.1007/s00374-005-0858-3

    CAS  Article  Google Scholar 

  11. Bayer C, Gomes J, Zanatta JA, Vieira FCB, Piccolo DJ, Six J (2015) Soil nitrous oxide emissions as affected by long-term tillage, cropping systems and nitrogen fertilization in Southern Brazil. Soil Tillage Res 146:213–222. https://doi.org/10.1016/j.still.2014.10.011

    Article  Google Scholar 

  12. Bayer C, Gomes J, Zanatta JA, Vieira FCB, Dieckow J (2016) Mitigating greenhouse gas emissions from a subtropical Ultisol by using long-term no-tillage in combination with legume cover crops. Soil Tillage Res 161:86–94. https://doi.org/10.1016/j.still.2016.03.011

    Article  Google Scholar 

  13. Besen MR, Ribeiro RH, Monteiro ANTR, Iwasaki GS, Piva JT (2018) Práticas conservacionistas do solo e emissão de gases do efeito estufa no Brasil. Sci Agropecu 9:429–439. https://doi.org/10.17268/sci.agropecu.2018.03.15

    CAS  Article  Google Scholar 

  14. Burton DL, Zebarth BJ, Gilliam KM, MacLeod J (2008) Effect of split application of fertilizer nitrogen on N2O emissions from potatoes. Can J Soil Sci 88:229–239. https://doi.org/10.4141/CJSS06007

    CAS  Article  Google Scholar 

  15. Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 162:145–173. https://doi.org/10.1111/aab.12014

    CAS  Article  Google Scholar 

  16. Cantarella H (2007) Nitrogênio. In: Novais RF, Alvarez VHV, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL (eds) Fertilidade do solo, 1st edn. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 375–470

    Google Scholar 

  17. Cardenas LM, Bhogal A, Chadwick DR, McGeough K, Misselbrook T, Rees RM, Thorman RE, Watson CJ, Williams JR, Smith KA, Calvet S (2019) Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands. Sci Total Environ 661:696–710. https://doi.org/10.1016/j.scitotenv.2019.01.082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. de Klein CAM, Harvey MJ (2015) Nitrous oxide chamber methodology guidelines–Version 1.1. Ministry for Primary Industries, Wellington

  19. Dobbie K, McTaggart I, Smith K (1999) Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. J Geophys Res Atmos 104:26891–26899

    CAS  Article  Google Scholar 

  20. Edenhofer O, Pichs-Madruga R, Sokona Y, Minx JC, Farahani E, Kandner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T (2014) Climate change 2014: mitigation of climate change: working group III contribution to the Fifth Assessment Report of the intergovermental panel on climate change. Cambridge University Press, Cambridge

  21. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean L, Lowe DC, Myhre G, Nganga J, Prinn, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  22. Gomes J, Bayer C, Costa FS, Piccolo MC, Vieira FCB (2009) Soil nitrous oxide emission as affected by long term tillage, crop rotations and fertilization in a subtropical environment. Soil Tillage Res 101:36–44. https://doi.org/10.1016/j.still.2014.10.011

    Article  Google Scholar 

  23. Guertal EA (2009) Slow-release nitrogen fertilizers in vegetable production: a review. Hort Technol 19:16–19. https://doi.org/10.21273/HORTSCI.19.1.16

    Article  Google Scholar 

  24. Ibarr MA, Zanatta JA, Dieckow J, Ribeiro RH, Rachwal MFG, Stahl J (2021) Nitrous oxide and methane emissions from soil and nitrogen uptake by eucalyptus fertilized with enhanced efficiency fertilizers. Plant Soil 463: 615–630. https://doi.org/10.1007/s11104-021-04938-5

    CAS  Article  Google Scholar 

  25. IPCC (2013) Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

  26. Kasper M, Foldal C, Kitzler B, Hass E, Strauss P, Eder A, Zechmeister-Boltenstern S, Amon B (2019) N2O emissions and NO3 leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling approach. Nutr Cycl Agroecosyst 113:95–111. https://doi.org/10.1007/s10705-018-9965-z

    CAS  Article  Google Scholar 

  27. Kim D-G, Giltrap D (2017) Determining optimum nitrogen input rate and optimum yield-scaled nitrous oxide emissions: theory, field observations, usage, and limitations. Agric Ecosyst Environ 247:371–378. https://doi.org/10.1016/j.agee.2017.07.003

    CAS  Article  Google Scholar 

  28. Martins MR, Jantalia CP, Polidoro JC, Batista JN, Alves BJN, Boddey RM, Urquiaga S (2015) Nitrous oxide and ammonia emissions from N fertilization of maize crop under no-till in a Cerrado soil. Soil Tillage Res 151:75–81. https://doi.org/10.1016/j.still.2015.03.004

    Article  Google Scholar 

  29. Martins MR, Santanna SAC, Zaman M, Santos RC, Monteiro RC, Alves BJR, Jantalia CP, Boddey RM, Urquiaga S (2017) Strategies for the use of urease and nitrification inhibitors with urea: impact on N2O and NH3 emissions, fertilizer-15N recovery and maize yield in a tropical soil. Agric Ecosyst Environ 247:54–62. https://doi.org/10.1016/j.agee.2017.06.021

    CAS  Article  Google Scholar 

  30. MCTI (2016) Terceira Comunicação Nacional do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima, 3rd edn. Ministério da Ciência, Tecnologia e Inovação, Brasília

  31. Migliorati MdA, Scheer C, Grace PR, Rowlings DW, Bell M, McGree J (2014) Influence of different nitrogen rates and DMPP nitrification inhibitor on annual N2O emissions from a subtropical wheat–maize cropping system. Agric Ecosyst Environ 186:33–43. https://doi.org/10.1016/j.agee.2014.01.016

    CAS  Article  Google Scholar 

  32. Mira AB, Cantarella H, Souza-Netto GJM, Moreira LA, Kamogawa MY, Otto R (2017) Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric Ecosyst Environ 248:105–112. https://doi.org/10.1016/j.agee.2017.07.032

    CAS  Article  Google Scholar 

  33. Mosier AR (1989) Chamber and isotope techniques. In: Andreae MO, Schimel DS (eds) Exchange of traces gases between terrestrial ecosystems and the atmosphere: report of the Dahlem Workshop. Wiley, Berlin, pp 175–187

    Google Scholar 

  34. Naz MY, Sulaiman SA (2016) Slow release coating remedy for nitrogen loss from conventional urea: a review. J Control Release 225:109–120. https://doi.org/10.1016/j.jconrel.2016.01.037

    CAS  Article  PubMed  Google Scholar 

  35. Nishimura S, Sugito T, Nagatake A, Oka N (2021) Nitrous oxide emission reduced by coated nitrate fertilizer in a cool-temperate region. Nutr Cycl Agroecosyst 119:275–289. https://doi.org/10.1007/s10705-020-10116-3

    CAS  Article  Google Scholar 

  36. Pimentel LG, Weiler DA, Pedroso GM, Bayer C (2015) Soil N2O emissions following cover-crop residues application under two soil moisture conditions. J Plant Nutr Soil Sci 178:631–640. https://doi.org/10.1002/jpln.201400392

    CAS  Article  Google Scholar 

  37. Piva JT, Sartor LR, Sandini IE, Moraes A, Dieckow J, Bayer C, Rosa CM (2019) Emissions of nitrous oxide and methane in a subtropical ferralsol subjected to nitrogen fertilization and sheep grazing in integrated crop-livestock system. Rev Bras Cienc Solo 43:1–13. https://doi.org/10.1590/18069657rbcs20180140

    CAS  Article  Google Scholar 

  38. Ribeiro RH, Besen MR, Simon PL, Bayer C, Piva JT (2020) Enhanced-efficiency nitrogen fertilisers reduce winter losses of nitrous oxide, but not of ammonia, from no-till soil in a subtropical agroecosystem. Soil Use Manag 36: 420–428. https://doi.org/10.1111/sum.12575

    Article  Google Scholar 

  39. Rose TJ, Wood RH, Rose MT, Zwieten LV (2018) A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT. Agric Ecosyst Environ 252:69–73. https://doi.org/10.1016/j.agee.2017.10.008

    CAS  Article  Google Scholar 

  40. Sanz-Cobena A, Sánchez-Martín L, García-Torres L, Vallejo A (2012) Gaseous emissions of N2O and NO and NO3 leaching from urea applied with urease and nitrificat on inhibitors to a maize (Zea mays) crop. Agric Ecosyst Environ 149:64–73. https://doi.org/10.1016/j.agee.2011.12.016

    CAS  Article  Google Scholar 

  41. Sanz-Cobena A, Lassaleta L, Aquilera E, del Prado A, Garnier J, Billen G, Iglesias A, Sánchez B, Guardia G, Abalos D, Plaza-Bonilla D, Puigdueta-Bartolomé I, Moral E, Galán E, Arriaga H, Merino P, Infante-Amante J, Mejide A, Pardo G, Álvaro Fuentes J, Gilsanz C, Báez D, Doltra J, Gonzáles-Ubierna S, Cayuela ML, Menéndez S, Díaz-Pinés E, Le-Noë J, Quemada M, Estellés F, Calvet S, van Grinsven HJM, Westhoek H, Sanz MJ, Gimeno BS, Vallejo A, Smith P (2017) Strategies for greenhouse gas emissions mitigation in mediterranean agriculture: a review. Agric Ecosyst Environ 238:5–24. https://doi.org/10.1016/j.agee.2016.09.038

    CAS  Article  Google Scholar 

  42. Scheer C, Grace PR, Rowlings DW, Payero J (2012) Nitrous oxide emissions from irrigated wheat in Australia: impact of irrigation management. Plant Soil 359:351–362. https://doi.org/10.1007/s11104-012-1197-4

    CAS  Article  Google Scholar 

  43. Soil Survey Staff (2006). Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. Agric. Handbk. 436. U.S. Gov. Print. Office, Washington, DC

  44. Stafanato JB, Goulart RS, Zonta E, Lima E, Mazur N, Pereira CG, Souza HN (2013) Volatilização de amônia oriunda de ureia pastilhada com micronutrientes em ambiente controlado. Rev Bras Cien Solo 37:726–732. https://doi.org/10.1590/S0100-06832013000300019

    CAS  Article  Google Scholar 

  45. Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweis SJ (1995) Análise de solo, planta e outros materiais, 2nd edn. Universidade Federal de Rio Grande do Sul, Porto Alegre

    Google Scholar 

  46. van der Weerden TJ, Luo J, Di HJ, Podolyan A, Phillips RL, Saggar S, Klein CAM, Cox N, Ettema P, Rys G (2016) Nitrous oxide emissions from urea fertiliser and effluent with and without inhibitors applied to pasture. Agric Ecosyst Environ 219:58–70. https://doi.org/10.1016/j.agee.2015.12.006

    CAS  Article  Google Scholar 

  47. Venterea RT, Bijesh M, Dolan MS (2011) Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. J Environ Qual 40:1521–1531. https://doi.org/10.2134/jeq2011.0039

    CAS  Article  PubMed  Google Scholar 

  48. Wallace AJ, Armstrong RD, Harris RH, Belyaeva ON, Grace PR, Partington DL, Scheer C (2018) Fertiliser timing and use of inhibitors to reduce N2O emissions of rainfed wheat in a semi-arid environment. Nutr Cycl Agroecosyst 112:231–252. https://doi.org/10.1007/s10705-018-9941-7

    CAS  Article  Google Scholar 

  49. Wallace AJ, Armstrong RD, Grace PR, Scheer C, Partington DL (2020) Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutr Cycl Agroecosyst 116:41–56. https://doi.org/10.1007/s10705-019-10028-x(0123456789(),-volV)(01234567

    CAS  Article  Google Scholar 

  50. Weller S, Fischer A, Willibald G, Navé B, Kiese R (2019) N2O emissions from maize production in South-West Germany and evaluation of N2O mitigation potential under single and combined inhibitor application. Agric Ecosyst Environ 269:215–223. https://doi.org/10.1016/j.agee.2018.10.004

    CAS  Article  Google Scholar 

  51. Wrage-Mönnig N, Horn MA, Well R, Müller C, Velthof G, Oenema O (2018) The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol Biochem 123:A3–A16. https://doi.org/10.1016/j.soilbio.2018.03.020

    CAS  Article  Google Scholar 

  52. Zanatta JA, Bayer C, Vieira FCB, Gomes J, Tomazi M (2010) Nitrous oxide and methane fluxes in south Brazilian gleysol as affected by nitrogen fertilizers. Rev Bras Cienc Solo 34:1653–1665. https://doi.org/10.1590/S0100-06832010000500018

    CAS  Article  Google Scholar 

  53. Zhu X, Burger M, Doane TA, Horwath WR (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. PNAS 110:6328–6333. https://doi.org/10.1073/pnas.1219993110

    Article  Google Scholar 

Download references

Acknowledgements

This research work was funded by CNPq (Brazilian Council for Scientific and Technological Development) and FAPERGS (Foundation for Research Support of the Rio Grande do Sul State).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcos Renan Besen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Besen, M.R., Ribeiro, R.H., Bayer, C. et al. Nitrous oxide emissions from enhanced-efficiency nitrogen fertilizers applied to annual crops in a subtropical ecosystem. Nutr Cycl Agroecosyst 121, 85–98 (2021). https://doi.org/10.1007/s10705-021-10161-6

Download citation

Keywords

  • N use efficiency
  • NBPT
  • Polymer coated urea
  • Subtropical agriculture