Skip to main content

Nitrogen cycling in tropical grass-legume pastures managed under canopy light interception

Abstract

In grass-legume pastures, grazing management strategies are an essential factor affecting nitrogen (N) cycling. This study assessed the impact of grazing management on N cycling in rotationally-stocked mixed pastures of ‘Marandu’ palisadegrass (Brachiaria brizantha) and ‘Comum’ calopo (Calopogonium mucunoides). Treatments included three grazing management strategies, defined by interruption of the rest period when the canopy reached 90 (90LI), 95 (95LI) and 100% (100LI) of the interception of photosynthetically active radiation. A 2-yr experimental period was adopted. Plant litter responses, forage intake and livestock excretion were evaluated. No differences between grazing management were obtained for existing (294 g OM m−2) and deposited litter (6.7 g OM m−2 d−1, P > 0.10). Compared to the dry season, the litter decomposition rate increased 24.0%, and the half-life decreased 37.8% in the rainy season (P < 0.10). The N cycling via litter (553 g ha−1 d−1) was similar in all grazing management (P > 0.10). Less frequent defoliation (100LI) resulted in reduced proportion of legume intake (P < 0.10, 94.4 vs. 168.5 g kg−1; an average of 90LI and 95LI, respectively), lower N intake (123.1 vs. 194.1 g animal unit−1 d−1) and a lower input of N from biological fixation (73.2 vs. 97.8 kg ha−1 yr−1). Less frequent defoliation should be avoided because it reduces the N intake and N retained by animals, which caused a reduction in N utilisation efficiency by heifers. Thus, 95% light interception is the maximum limit to interrupt the regrowth in palisadegrass-calopo pastures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  2. Alencar NM, Vendramini JMB, Santos AC, Silveira ML, Dubeux JCB, Sousa LF, Neiva JNM (2018) Herbage characteristics of pintoi peanut and paslisadegrass established as monoculture or mixed swards. Crop Sci 58:2131–2137. https://doi.org/10.2135/cropsci2017.09.0538

    CAS  Article  Google Scholar 

  3. Allen VG, Batello C, Beretta EJ, Hodgson J, Kothmann M, Li X, Mclvor J, Milne J, Morris C, Peeters A, Sanderson M (2011) An international terminology for grazing lands and grazing animals. Grass Forage Sci 66:2–28. https://doi.org/10.1111/j.1365-2494.2010.00780.x

    Article  Google Scholar 

  4. Anderson JM, Hetherington SL (1999) Temperature, nitrogen availability and mixture effects on the decomposition of heather [Calluna vulgaris (L.) Hull] and bracken [Pteridium aquilinum (L.) Kuhn] litters. Funct Ecol 13:116–124. https://doi.org/10.1046/j.1365-2435.1999.00014.x

    Article  Google Scholar 

  5. AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, Arlington, VA

    Google Scholar 

  6. Apolinário VXO, Dubeux JCB Jr, Mello ACL, Vendramini JMB, Lira MA, Santos MVF, Muir JP (2013) Deposition and decomposition of signal grass pasture litter under varying nitrogen fertilizer and stocking rates. Agron J 105:999–1004. https://doi.org/10.2134/agronj2012.0433

    Article  Google Scholar 

  7. Arnold SL, Schepers JS (2004) A simple roller-mill grinding procedure for plant and soil samples. Comm Soil Sci Plant Anal 35:537–545. https://doi.org/10.1081/CSS-120029730

    CAS  Article  Google Scholar 

  8. Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270. https://doi.org/10.1023/A:1009890514844

    Article  Google Scholar 

  9. Boddey RM, Macedo R, Tarré RM, Ferreira E, Oliveira OC, Rezende CdP, Cantarutti RB, Pereira JM, Alves BJR, Urquiaga S (2004) Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agr Ecosys Environ 103:389–403. https://doi.org/10.1016/j.agee.2003.12.010

    CAS  Article  Google Scholar 

  10. Boddey RM, Casagrande DR, Homem BGC, Alves BJR (2020) Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: a review. Grass Forage Sci 75:357–371. https://doi.org/10.1111/gfs.12498

    CAS  Article  Google Scholar 

  11. Cantarutti RB, Tarré RM, Macedo R, Cadisch G, Rezende CdP, Pereira JM, Braga JM, Gomide JA, Ferreira E, Alves BJR, Urquiaga S, Boddey RM (2002) The effect of grazing intensity and the presence of a forage legume on nitrogen dynamics in Brachiaria pastures in the Atlantic forest region of the south of Bahia, Brazil. Nutr Cycling Agroecosyst 64:257–271. https://doi.org/10.1023/A:1021415915804

    CAS  Article  Google Scholar 

  12. Carvalho LR, Pereira LET, Hungria M, Camargo PB, Da Silva SC (2019) Nodulation and biological nitrogen fixation (BNF) in forage peanut (Arachis pintoi) cv. Belmonte subjected to grazing regimes. Agr Ecosys Environ 278:96–106. https://doi.org/10.1016/j.agee.2019.02.016

    Article  Google Scholar 

  13. Claessen MEC, de Barreto WO, Paula JL, Duarte MN (1997) Manual de métodos de análise de solo. Embrapa, Rio de Janeiro: Centro Nacional de Pesquisa de Solos

  14. Da Silva SC, Sbrissia AF, Pereira LET (2015) Ecophysiology of c4 forage grasses—understanding plant growth for optimising their use and management. Agriculture 5:598–625. https://doi.org/10.3390/agriculture5030598

    Article  Google Scholar 

  15. Da Silva SC, Bueno AAO, Carnevalli RA, Silva GP, Chiavegato MB (2019) Nutritive value and morphological characteristics of Mombaça grass managed with different rotational grazing strategies. J Agric Sci 157:592–598. https://doi.org/10.1017/S0021859620000052

    CAS  Article  Google Scholar 

  16. De Vries MW (1995) Estimating forage intake and quality in grazing cattle: a reconsideration of the hand-plucking method. Rangeland Ecol Manag 48:370–375

    Article  Google Scholar 

  17. Depablos LAA, Homem BGC, do Couto PH, Dubeux Jr JCB, Bernardes TF, Casagrande, DR, Lara MAS (2020) Managing “Marandu” palisadegrass and calopo pastures based on light interception. Grass Forage Sci 75:447–461. https://doi.org/10.1111/gfs.12501

  18. Detmann E, Valente ÉEL, Batista ED, Huhtanen P (2014) An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livest Sci 162:141–153. https://doi.org/10.1016/j.livsci.2014.01.029

    Article  Google Scholar 

  19. Dubeux JCB Jr, Sollenberger LE, Interrante SM, Vendramini JMB, Stewart RL Jr (2006a) Litter decomposition and mineralization in bahiagrass pastures managed at different intensities. Crop Sci 46:1305–1310. https://doi.org/10.2135/cropsci2005.08-0263

    CAS  Article  Google Scholar 

  20. Dubeux JCB Jr, Sollenberger LE, Vendramini JMB, Stewart RL Jr, Interrante SM (2006b) Litter mass, deposition rate, and chemical composition in bahiagrass pastures managed at different intensities. Crop Sci 46:1299–1304. https://doi.org/10.2135/cropsci2005.08-0262

    CAS  Article  Google Scholar 

  21. Dubeux JCB Jr, Sollenberger LE, Mathews BW, Scholberg JM, Santos HQ (2007) Nutrient cycling in warm-climate grasslands. Crop Sci 47:915–928. https://doi.org/10.2135/cropsci2006.09.0581

    CAS  Article  Google Scholar 

  22. Faverjon L, Escobar-Gutiérrez AJ, Litrico I, Louarn G (2017) Conserved potential development framework applies to shoots of legume species with contrasting morphogenetic strategies. Front Plant Sci 8:405. https://doi.org/10.3389/fpls.2017.00405

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frouz J (2018) Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332:161–172. https://doi.org/10.1016/j.geoderma.2017.08.039

    CAS  Article  Google Scholar 

  24. Gomes FK, Oliveira MDBL, Homem BGC, Boddey RM, Bernardes TF, Gionbelli MP, Lara MAS, Casagrande DR (2018) Effects of grazing management in brachiaria grass-forage peanut pastures on canopy structure and forage intake. J Anim Sci 96:3837–3849. https://doi.org/10.1093/jas/sky236

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gomes FK, Homem BGC, Oliveira MDBL, Dubeux JCB Jr, Boddey RM, Bernardes TF, Casagrande DR (2020) Defoliation frequency affects litter responses and nitrogen excretion by heifers in palisadegrass–forage peanut pastures. Agron J 112:3089–3100. https://doi.org/10.1002/agj2.20240

    CAS  Article  Google Scholar 

  26. Gomide CAM, Paciullo DSC, de Costa IA, Lima AM, de Castro CRT, de Lédo FJS (2011) Morphogenesis of dwarf elephant grass clones in response to intensity and frequency of defoliation in dry and rainy seasons. Rev Bras Zoo 40:1445–1451. https://doi.org/10.1590/S1516-35982011000700007

  27. Haynes RJ, Williams PH (1993) Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv Agron 49:119–199. https://doi.org/10.1016/S0065-2113(08)60794-4

    CAS  Article  Google Scholar 

  28. Holden LA (1999) Comparison of methods of in vitro dry matter digestibility for ten feeds. J Dairy Sci 82:1791–1794. https://doi.org/10.3168/jds.S0022-0302(99)75409-3

    CAS  Article  PubMed  Google Scholar 

  29. Jank L, Barrios SC, do Valle CB, Simeão RM, Alves GF (2014) The value of improved pastures to Brazilian beef production. Crop Pasture Sci 65:1132–1137. https://doi.org/10.1071/CP13319

  30. Jones RJ, Ludlow MM, Troughton JH, Blunt CG (1979) Estimation of the proportion of C3 and C4 plant species in the diet of animals from the ratio of natural 12C and 13C isotopes in the faeces. J Agric Sci 92:91–100. https://doi.org/10.1017/S0021859600060536

    Article  Google Scholar 

  31. Kohmann MM, Sollenberger LE, Dubeux JCB Jr, Silveira ML, Moreno LSB, Silva LS, Aryal P (2018) Nitrogen fertilization and proportion of legume affect litter decomposition and nutrient return in grass pastures. Crop Sci 58:2138–2148. https://doi.org/10.2135/cropsci2018.01.0028

    CAS  Article  Google Scholar 

  32. Kohmann MM, Sollenberger LE, Dubeux JCB Jr, Silveira ML, Moreno LSB (2019) Legume proportion in grassland litter affects decomposition dynamics and nutrient mineralization. Agron J 111:1079–1089. https://doi.org/10.2134/agronj2018.09.0603

    CAS  Article  Google Scholar 

  33. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003

    CAS  Article  Google Scholar 

  34. Littell RC, Pendergast J, Natarajan R (2000) Modelling covariance structure in the analysis of repeated measures data. Stat Med 19:1793–1819. https://doi.org/10.1002/1097-0258(20000715)19:13%3c1793::Aid-sim482%3e3.0.Co;2-q

    CAS  Article  PubMed  Google Scholar 

  35. Liu K, Sollenberger LE, Silveira ML, Vendramini JMB, Newman YC (2011) Grazing intensity and nitrogen fertilization affect litter responses in ‘tifton 85’ bermudagrass pastures: ii. decomposition and nitrogen mineralization. Agron J 103:163–168. https://doi.org/10.2134/agronj2010.0320

    Article  Google Scholar 

  36. Macedo R, Tarré RM, Ferreira E, Rezende CdP, Pereira JM, Cadisch G, Rouws JRC, Alves BJR, Urquiaga S, Boddey RM (2010) Forage intake and botanical composition of feed for cattle fed Brachiaria/legume mixtures. Sci Agric 67:384–392. https://doi.org/10.1590/S0103-90162010000400002

    Article  Google Scholar 

  37. Mathews BW, Tritschler JP, Carpenter JR, Sollenberger LE (1999) Soil macronutrient distribution in rotationally stocked kikuyugrass paddocks with short and long grazing periods. Comm Soil Sci Plant Anal 30:557–571. https://doi.org/10.1080/00103629909370226

    CAS  Article  Google Scholar 

  38. Moore JE, Mott GO (1974) Recovery of residual organic matter from in vitro digestion of forages. J Dairy Sci 57:1258–1259. https://doi.org/10.3168/jds.S0022-0302(74)85048-4

    Article  Google Scholar 

  39. Myers WD, Ludden PA, Nayigihugu V, Hess BW (2004) Technical note: a procedure for the preparation and quantitative analysis of samples for titanium dioxide. J Anim Sci 82:179–183. https://doi.org/10.2527/2004.821179x

    CAS  Article  PubMed  Google Scholar 

  40. Okito A, Alves BRJ, Urquiaga S, Boddey RM (2004) Isotopic fractionation during N2 fixation by four tropical legumes. Soil Biol Biochem 36:1179–1190. https://doi.org/10.1016/j.soilbio.2004.03.004

    CAS  Article  Google Scholar 

  41. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  42. Pereira JM, Tarré RM, Macedo R, Rezende CdP, Alves BJR, Urquiaga S, Boddey RM (2009) Productivity of Brachiaria humidicola pastures in the Atlantic forest region of Brazil as affected by stocking rate and the presence of a forage legume. Nutr Cycl Agroecosyst 83:179–196. https://doi.org/10.1007/s10705-008-9206-y

    Article  Google Scholar 

  43. Pereira JC, Gomes FK, Oliveira MDBL, Lara MAS, Bernardes TF, Casagrande DR (2017) Defoliation management affects morphogenetic and structural characteristics of mixed pastures of brachiaria grass and forage peanut. Afr J Range for Sci 34:13–19. https://doi.org/10.2989/10220119.2017.1315960

    Article  Google Scholar 

  44. Pizarro EA, Carvalho MA (1997) Evaluation of a collection of Calopogonium mucunoides Desv. for the Cerrado ecosystem. Braz J Appl Seed Prod 15:17–22

    Google Scholar 

  45. Rezende CdP, Cantarutti RB, Braga JM, Gomide JA, Pereira JM, Ferreira E, Tarré R, Macedo R, Alves BJR, Urquiaga S, Cadisch G, Giller KE, Boddey RM (1999) Litter deposition and disappearance in Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Nutr Cycl Agroecosyst 54:99–112. https://doi.org/10.1023/A:1009797419216

    Article  Google Scholar 

  46. Ryle GJA, Powell CE, Gordon AJ (1985) Defoliation in white clover: regrowth, photosynthesis and N2 fixation. Ann Bot 56:9–18. https://doi.org/10.1093/oxfordjournals.aob.a086998

    CAS  Article  Google Scholar 

  47. Sá Júnior A, de Carvalho LG, da Silva FF, de Carvalho AM (2012) Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theor Appl Climatol 108:1–7. https://doi.org/10.1007/s00704-011-0507-8

    Article  Google Scholar 

  48. Scholefield D, Lockyer DR, Whitehead DC, Tyson KC (1991) A model to predict transformations and losses of nitrogen in UK pastures grazed by beef cattle. Plant Soil 132:165. https://doi.org/10.1007/BF00010397

    CAS  Article  Google Scholar 

  49. Seiffert NF, Zimmer AH, Schunke RM, Behling-Miranda CH (1985) Reciclagem de nitrogênio em pastagem consociada de Calopogonium mucunoides com Brachiaria decumbens. Pesqui Agropecu Bras 20:529–544

    Google Scholar 

  50. Shearer G, Kohl D (1986) N2-fixation in field settings: estimations based on natural 15N abundance functional. Plant Biol 13:699–756. https://doi.org/10.1071/PP9860699

    CAS  Article  Google Scholar 

  51. Silva LFC, Valadares Filho SC, Chizzotti ML, Rotta PP, Prados LF, Valadares RFD, Zanetti D, Braga JMS (2012) Creatinine excretion and relationship with body weight of Nellore cattle. Rev Bras Zoo 41:807–810. https://doi.org/10.1590/S1516-35982012000300046

    Article  Google Scholar 

  52. Silveira MCT, Nascimento Júnior D, Rodrigues CS, Pena KS, Souza Júnior SJ, Barbero LM, Limão VA, Euclides VAP, Da Silva SC (2016) Forage sward structure of Mulato grass (Brachiaria hybrid ssp.) subjected to rotational stocking strategies. Aust J Crop Sci 10:864–873. https://doi.org/10.21475/ajcs.2016.10.06.p7568

  53. Siqueira da Silva HM, Dubeux JCB Jr, Dos Santos MVF, Lira MA, Lira MA Jr, Muir JM (2012) Signal grass litter decomposition rate increases with inclusion of calopo. Crop Sci 52:1416–1423. https://doi.org/10.2135/cropsci2011.09.0482

    Article  Google Scholar 

  54. Siqueira da Silva HM, Dubeux Jr JCB, Dos Santos MVF, Lira MA, Mello ACL, Lira Jr MA, Ferraz LV (2010) Litter decomposition of Brachiaria decumbens Stapf. and Calopogonium mucunoides Desv. in the rumen and in the field: a comparative analysis. Nutr Cycl Agroecosyst 87:151–158. https://doi.org/10.1007/s10705-009-9322-3

  55. Sollenberger LE, Kohmann MM, Dubeux JCB Jr, Silveira ML (2019) Grassland management affects delivery of regulating and supporting ecosystem services. Crop Sci 59:441–459. https://doi.org/10.2135/cropsci2018.09.0594

    CAS  Article  Google Scholar 

  56. Thomas RJ, Asakawa NM (1993) Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol Biochem 25:1351–1361. https://doi.org/10.1016/0038-0717(93)90050-L

    CAS  Article  Google Scholar 

  57. Titgemeyer EC, Armendariz CK, Bindel DJ, Greenwood RH, Löest CA (2001) Evaluation of titanium dioxide as a digestibility marker for cattle. J Anim Sci 79:1059–1063. https://doi.org/10.2527/2001.7941059x

    CAS  Article  PubMed  Google Scholar 

  58. Tylutki TP, Fox DG, Durbal VM, Tedeschi LO, Russell JB, Van Amburgh ME, Overton TR, Chase LE, Pell AN (2008) Cornell net carbohydrate and protein system: a model for precision feeding of dairy cattle. Anim Feed Sci Tech 143:174–202. https://doi.org/10.1016/j.anifeedsci.2007.05.010

    CAS  Article  Google Scholar 

  59. Weider RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data from litterbags. Ecology 63:1636–1642. https://doi.org/10.2307/1940104

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the NEFOR (Brazilian Forage Team) members for their contributions during the field trial setup. This study was funded by the Minas Gerais Research Foundation (FAPEMIG). The authors acknowledge the National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES) for granting a scholarship to the first and second authors; and the National Institute of Science and Technology in Animal Science (INCT-CA) for the partnership with the legume’s studies. The author RMB gratefully acknowledges the research fellowships from CNPq and the Rio de Janeiro State Research Foundation (FAPERJ). The authors acknowledge Italo B. G. de Lima for his contributions in the “Nitrogen Cycle Figures” of the current manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Casagrande.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1460 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Depablos, L., Homem, B.G.C., Ferreira, I.M. et al. Nitrogen cycling in tropical grass-legume pastures managed under canopy light interception. Nutr Cycl Agroecosyst 121, 51–67 (2021). https://doi.org/10.1007/s10705-021-10160-7

Download citation

Keywords

  • Biological N2 fixation
  • Brachiaria
  • Calopogonium
  • Grazing management strategies
  • Litter dynamics
  • Livestock excretion