Skip to main content

Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics

Abstract

Microbial detritus contributes substantially to the soil organic matter (SOM). Analysis of global literature indicated that microbial detritus carbon (C) contributed 59 and 64% of total soil C in arable agricultural and grassland systems respectively, with a 2.5% greater contribution of bacterial-derived detritus in grasslands and with no difference in the proportional contribution of fungal detritus. Total soil C and nitrogen (N) content was higher in grasslands with an average of 2.8 and 1.6 g N kg−1 soil and 28.8 and 16.8 g C kg−1 soil in grassland and arable systems, respectively. Soil N content explained 11 to 28% of the variance in microbial detritus contribution to soil C. Further, total soil N and C content explained more variance than other factors which are commonly considered to mediate SOM content including precipitation, acidity and clay. Microbial biomass C assimilation and re-metabolism of SOM are affected by nutrient supply and the dissimilarity of the C to N, phosphorus (P) and sulfur (S) ratios between fresh organic matter (FOM), SOM and microorganisms (C:N:P:S 10,000:261:32:48, 10,000:833:200:143, and 10,000:1,494:458:154, respectively). In agricultural systems, stoichiometrically balanced nutrient addition to FOM can increase C transfer to SOM by 6 to 52% and importantly reduce the mineralization of pre-existing SOM by 24 to 50%. Future research to quantify economic and environmental implications is warranted with need for a paradigm shift in thinking to focus on the nutrient requirements of the whole soil–plant system rather than the agronomic requirements of crops alone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adams JL, Tipping E, Thacker SA, Quinton JN (2018) An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation. Plant Soil 427:139–148. https://doi.org/10.1007/s11104-017-3478-4

    CAS  Article  Google Scholar 

  2. Amelung W, Miltner A, Zhang X, Zech W (2001) Fate of microbial residues during litter decomposition as affected by minerals. Soil Sci 166:598–606. https://doi.org/10.1097/00010694-200109000-00003

    CAS  Article  Google Scholar 

  3. Anderson DW (1979) Processes of humus formation and transformation in soils of the Canadian great plains. J Soil Sci 30:77–84. https://doi.org/10.1111/j.1365-2389.1979.tb00966.x

    CAS  Article  Google Scholar 

  4. Ayoub AT (1999) Fertilizers and the environment. Nutr Cycl Agroecosys 55:117–121. https://doi.org/10.1023/A:1009808118692

    Article  Google Scholar 

  5. Bailey VL, Smith JL, Bolton H Jr (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007. https://doi.org/10.1016/S0038-0717(02)00033-0

    CAS  Article  Google Scholar 

  6. Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 53:215–230. https://doi.org/10.1016/S0167-1987(99)00107-5

    Article  Google Scholar 

  7. Banerjee MR, Chapman SJ (1996) The significance of microbial biomass sulphur in soil. Biol Fert Soils 22:116–125. https://doi.org/10.1007/BF00384442

    CAS  Article  Google Scholar 

  8. Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198. https://doi.org/10.1016/j.soilbio.2016.03.017

    CAS  Article  Google Scholar 

  9. Banger K, Toor GS, Biswas A, Sidhu SS, Sudhir K (2010) Soil organic carbon fractions after 16-years of applications of fertilizers and organic manure in a Typic Rhodalfs in semi-arid tropics. Nutr Cycl Agroecosyst 86:391–399. https://doi.org/10.1007/s10705-009-9301-8

    Article  Google Scholar 

  10. Baumann K et al (2013) Changes in litter chemistry and soil lignin signature during decomposition and stabilisation of 13C labelled wheat roots in three subsoil horizons. Soil Biol Biochem 67:55–61. https://doi.org/10.1016/j.soilbio.2013.07.012

    CAS  Article  Google Scholar 

  11. Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD (2014) Rhizosphere stoichiometry: are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level? Net Phytol 201:505–517

    CAS  Article  Google Scholar 

  12. Bernal B, McKinley DC, Hungate BA, White PM, Mozdzer TJ, Megonigal JP (2016) Limits to soil carbon stability; deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biol Biochem 98:85–94. https://doi.org/10.1016/j.soilbio.2016.04.007

    CAS  Article  Google Scholar 

  13. Bertrand I, Viaud V, Daufresne T, Pellerin S, Recous S (2019) Stoichiometry constraints challenge the potential of agroecological practices for the soil C storage: a review. Agron Sustain Dev 39:54

    Article  Google Scholar 

  14. Blagodatskaya E, Blagodatsky S, Anderson T-H, Kuzyakov Y (2014) Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS ONE 9:e93282. https://doi.org/10.1371/journal.pone.0093282

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Buchkowski RW, Shaw AN, Sihi D, Smith GR, Keiser AD (2019) Constraining carbon and nutrient flows in soil with ecological stoichiometry. Front Ecol Evol. https://doi.org/10.3389/fevo.2019.00382

    Article  Google Scholar 

  16. Chan K, McCoy D (2010) Soil carbon storage potential under perennial pastures in the mid-north coast of New South Wales, Australia. Trop Grasslands 44:184–191

    Google Scholar 

  17. Chen C, Leinweber P, Eckhardt K-U, Sparks DL (2018) The composition and stability of clay-associated organic matter along a soil profile. Soil Syst 2:16. https://doi.org/10.3390/soilsystems2010016

    CAS  Article  Google Scholar 

  18. Chen R et al (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biol 20:2356–2367. https://doi.org/10.1111/gcb.12475

    Article  Google Scholar 

  19. Chowdhury MAH, Kouno K, Ando T (1999) Correlation among microbial biomass S, soil properties, and other biomass nutrients. Soil Sci Plant Nutr 45:175–186. https://doi.org/10.1080/00380768.1999.10409333

    Article  Google Scholar 

  20. Chowdhury S, Farrell M, Bolan N (2014) Priming of soil organic carbon by malic acid addition is differentially affected by nutrient availability. Soil Biol Biochem 77:158–169. https://doi.org/10.1016/j.soilbio.2014.06.027

    CAS  Article  Google Scholar 

  21. Clapp CE, Allmaras RR, Layese MF, Linden DR, Dowdy RH (2000) Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Till Res 55:127–142. https://doi.org/10.1016/S0167-1987(00)00110-0

    Article  Google Scholar 

  22. Cleveland CC, Liptzin D (2007) C:N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252. https://doi.org/10.1007/s10533-007-9132-0

    Article  Google Scholar 

  23. Condron L, Black A, Wakelin S (2012) Effects of long-term fertiliser inputs on the quantities of organic carbon in a soil profile under irrigated grazed pasture. Net Zeal J Agr Res 55:161–164. https://doi.org/10.1080/00288233.2012.662898

    Article  Google Scholar 

  24. Conyers M et al (2015) A review of organic carbon accumulation in soils within the agricultural context of southern New South Wales, Australia. Field Crops Res 184:177–182. https://doi.org/10.1016/j.fcr.2014.07.013

    Article  Google Scholar 

  25. Conyers MK, Mullen CL, Scott BJ, Poile GJ, Braysher BD (2003) Long-term benefits of limestone applications to soil properties and to cereal crop yields in southern and central New South Wales. Aust J Exp Agr 43:71–78. https://doi.org/10.1071/EA01121

    Article  Google Scholar 

  26. Coonan EC, Richardson AE, Kirkby CA, Kirkegaard JA, Amidy MA, Simpson JR, Strong C (2019) Soil carbon sequestration to depth in response to long-term phosphorus fertilization of grazed pasture. Geoderma 338:226–235

    CAS  Article  Google Scholar 

  27. Coonan EC, Kirkegaard JA, Kirkby CA, Strong C, Amidy MR, Richardson AE (2020a) Soil carbon dynamics following the transition of permanent pasture to cereal cropping: influence of initial soil fertility, lime application and nutrient addition. Crop Pasture Sci 71:23–35

  28. Coonan EC, Richardson AE, Kirkby CA, Kirkegaard JA, Amidy MR, Strong CL (2020) Soil fertility and nutrients mediate soil carbon dynamics following residue incorporation. Nutr Cycl Agroecosyst 116:205–221

    CAS  Article  Google Scholar 

  29. Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779. https://doi.org/10.1038/ngeo2520

    CAS  Article  Google Scholar 

  30. Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biol 19:988–995. https://doi.org/10.1111/gcb.12113

    Article  Google Scholar 

  31. Creamer CA, Foster AL, Lawrence C, McFarland J, Schulz M, Waldrop MP (2019) Mineralogy dictates the initial mechanism of microbial necromass association. Geochim Cosmochim Acta 260:161–176. https://doi.org/10.1016/j.gca.2019.06.028

    CAS  Article  Google Scholar 

  32. Creamer CA, Jones DL, Baldock JA, Farrell M (2014) Stoichiometric controls upon low molecular weight carbon decomposition. Soil Biol Biochem 79:50–56. https://doi.org/10.1016/j.soilbio.2014.08.019

    CAS  Article  Google Scholar 

  33. Creamer CA, Jones DL, Baldock JA, Rui Y, Murphy DV, Hoyle FC, Farrell M (2016) Is the fate of glucose-derived carbon more strongly driven by nutrient availability, soil texture, or microbial biomass size? Soil Biol Biochem 103:201–212. https://doi.org/10.1016/j.soilbio.2016.08.025

    CAS  Article  Google Scholar 

  34. Cui Y, Fang L, Guo X, Wang X, Zhang Y, Li P, Zhang X (2018) Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol Biochem 116:11–21

    CAS  Article  Google Scholar 

  35. Danise T, Fioretto A, Innangi M (2018) Spectrophotometric methods for lignin and cellulose in forest soils as predictors for humic substances. Eur J Soil Sci 69:856–867. https://doi.org/10.1111/ejss.12678

    CAS  Article  Google Scholar 

  36. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9:1163. https://doi.org/10.3390/su9071163

    CAS  Article  Google Scholar 

  37. Davidson EA, Ackerman IL (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–193. https://doi.org/10.1007/BF00000786

    CAS  Article  Google Scholar 

  38. Dedourge O, Vong P-C, Lasserre-Joulin F, Benizri E, Guckert A (2003) Immobilization of sulphur-35, microbial biomass and arylsulphatase activity in soils from field-grown rape, barley and fallow. Biol Fert Soils 38:181–185. https://doi.org/10.1007/s00374-003-0646-x

    CAS  Article  Google Scholar 

  39. Derrien D, Marol C, Balabane M, Balesdent J (2006) The turnover of carbohydrate carbon in a cultivated soil estimated by 13C natural abundances. Eur J Soil Sci 57:547–557. https://doi.org/10.1111/j.1365-2389.2006.00811.x

    CAS  Article  Google Scholar 

  40. Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr Cycl Agroecosys 64:237–256. https://doi.org/10.1023/A:1021471531188

    CAS  Article  Google Scholar 

  41. Dick W (1983) Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected by tillage intensity. Soil Sci Soc Am J 47:102–107. https://doi.org/10.2136/sssaj1983.03615995004700010021x

    CAS  Article  Google Scholar 

  42. Dijkstra F, Carrillo Y, Pendall E, Morgan J (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00216

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dijkstra P, Ishizu A, Doucett R, Hart SC, Schwartz E, Menyailo OV, Hungate BA (2006) 13C and 15N natural abundance of the soil microbial biomass. Soil Biol Biochem 38:3257–3266. https://doi.org/10.1016/j.soilbio.2006.04.005

    CAS  Article  Google Scholar 

  44. Dimassi B, Mary B, Fontaine S, Perveen N, Revaillot S, Cohan J-P (2014) Effect of nutrients availability and long-term tillage on priming effect and soil C mineralization. Soil Biol Biochem 78:332–339. https://doi.org/10.1016/j.soilbio.2014.07.016

    CAS  Article  Google Scholar 

  45. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biol 18:1781–1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x

    Article  Google Scholar 

  46. Ekschmitt K, Liu M, Vetter S, Fox O, Wolters V (2005) Strategies used by soil biota to overcome soil organic matter stability: Why is dead organic matter left over in the soil? Geoderma 128:167–176. https://doi.org/10.1016/j.geoderma.2004.12.024

    Article  Google Scholar 

  47. Fang Y, Nazaries L, Singh B, Singh BP (2018) Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biol 24:2775–2790. https://doi.org/10.1111/gcb.14154

    Article  Google Scholar 

  48. Fang Y, Singh BP, Collins D, Li B, Zhu J, Tavakkoli E (2018) Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils. Soil Biol Biochem 126:168–178. https://doi.org/10.1016/j.soilbio.2018.09.003

    CAS  Article  Google Scholar 

  49. Fang Y, Singh BP, Cowie A, Wang W, Arachchi MH, Wang H, Tavakkoli E (2019) Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions. Geoderma 354:113883. https://doi.org/10.1016/j.geoderma.2019.113883

    CAS  Article  Google Scholar 

  50. Filser J et al (2016) Soil fauna: key to new carbon models. Soil 2:565–582. https://doi.org/10.5194/soil-2-565-2016

    CAS  Article  Google Scholar 

  51. Finn D, Kopittke PM, Dennis PG, Dalal RC (2017) Microbial energy and matter transformation in agricultural soils. Soil Biol Biochem 111:176–192. https://doi.org/10.1016/j.soilbio.2017.04.010

    CAS  Article  Google Scholar 

  52. Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biol 21:2082–2094. https://doi.org/10.1111/gcb.12816

    Article  Google Scholar 

  53. Flessa H et al (2008) Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: a synthesis. J Plan Nutr Soil Sc 171:36–51. https://doi.org/10.1002/jpln.200700050

    CAS  Article  Google Scholar 

  54. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280. https://doi.org/10.1038/nature06275

    CAS  Article  PubMed  Google Scholar 

  55. Fontaine S et al (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96. https://doi.org/10.1016/j.soilbio.2010.09.017

    CAS  Article  Google Scholar 

  56. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843. https://doi.org/10.1016/S0038-0717(03)00123-8

    CAS  Article  Google Scholar 

  57. Fornara DA, Tilman D (2012) Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology 93:2030–2036. https://doi.org/10.1890/12-0292.1

    Article  PubMed  Google Scholar 

  58. Frey SD et al (2014) Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121:305–316

    CAS  Article  Google Scholar 

  59. Frossard E et al (2016) Soil properties and not inputs control carbon, nitrogen, phosphorus ratios in cropped soils in the long-term. Soil 2:83–95. https://doi.org/10.5194/soil-2-83-2016

    CAS  Article  Google Scholar 

  60. Gales EF (1952) The chemical activities of bacteria. Academic Press, New York

    Google Scholar 

  61. Gallejones P, Castellón A, del Prado A, Unamunzaga O, Aizpurua A (2012) Nitrogen and sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat–rapeseed rotation under a humid Mediterranean climate. Nutr Cycl Agroecosys 93:337–355. https://doi.org/10.1007/s10705-012-9520-2

    CAS  Article  Google Scholar 

  62. Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms: a review. Soil Biol Biochem 75:54–63. https://doi.org/10.1016/j.soilbio.2014.03.023

    CAS  Article  Google Scholar 

  63. Giller KE, Andersson JA, Corbeels M, Kirkegaard J, Mortensen D, Erenstein O, Vanlauwe B (2015) Beyond conservation agriculture. Front Plant Sci 6:870. https://doi.org/10.3389/fpls.2015.00870

    Article  PubMed  PubMed Central  Google Scholar 

  64. Glaser B, Ma-B T, Alef K (2004) Amino sugars and muramic acid: biomarkers for soil microbial community structure analysis. Soil Biol Biochem 36:399–407. https://doi.org/10.1016/j.soilbio.2003.10.013

    CAS  Article  Google Scholar 

  65. Gleixner G (2013) Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies. Ecol Res 28:683–695. https://doi.org/10.1007/s11284-012-1022-9

    CAS  Article  Google Scholar 

  66. Gleixner G, Czimczik CJ, Kramer C, Lühker B, Schmidt MW (2001) Plant compounds and their turnover and stabilization as soil organic matter. In: Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 201–215

  67. Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366. https://doi.org/10.1016/S0146-6380(01)00166-8

    CAS  Article  Google Scholar 

  68. Gregorich E, Drury C, Baldock J (2001) Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Can J Soil Sci 81:21–31. https://doi.org/10.4141/S00-041

    CAS  Article  Google Scholar 

  69. Guggenberger G, Zech W, Haumaier L, Christensen BT (1995) Land-use effects on the composition of organic matter in particle-size separates of soils: II. CPMAS and solution 13C NMR analysis. Eur J Soil Sci 46:147–158. https://doi.org/10.1111/j.1365-2389.1995.tb01821.x

    CAS  Article  Google Scholar 

  70. Guignard MS et al (2017) Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Front Ecol Evol. https://doi.org/10.3389/fevo.2017.00070

    Article  Google Scholar 

  71. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biol 8:345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  72. Gupta VVSR, Germida JJ (2015) Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol Biochem 80:A3–A9. https://doi.org/10.1016/j.soilbio.2014.09.002

    CAS  Article  Google Scholar 

  73. Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35:823–830. https://doi.org/10.1016/j.orggeochem.2004.03.003

    CAS  Article  Google Scholar 

  74. Han L, Sun K, Jin J, Xing B (2016) Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biol Biochem 94:107–121. https://doi.org/10.1016/j.soilbio.2015.11.023

    CAS  Article  Google Scholar 

  75. Han P, Zhang W, Wang G, Sun W, Huang Y (2016) Changes in soil organic carbon in croplands subjected to fertilizer management: a global meta-analysis. Sci Rep 6:27199. https://doi.org/10.1038/srep27199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. He Z, Wu J, O‘Donnell A, Syers J, (1997) Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biol Fert Soils 24:421–428. https://doi.org/10.1007/s003740050267

    CAS  Article  Google Scholar 

  77. Hénault C, English LC, Halpin C, Andreux F, Hopkins DW (2006) Microbial community structure in soils with decomposing residues from plants with genetic modifications to lignin biosynthesis. FEMS Microbiol Lett 263:68–75. https://doi.org/10.1111/j.1574-6968.2006.00416.x

    CAS  Article  PubMed  Google Scholar 

  78. Henriksen T, Breland T (1999) Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol Biochem 31:1121–1134. https://doi.org/10.1016/S0038-0717(99)00030-9

    CAS  Article  Google Scholar 

  79. Hoyle FC, O’Leary RA, Murphy DV (2016) Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems. Sci Rep 6:31468. https://doi.org/10.1038/srep31468

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Hu Y, Zheng Q, Noll L, Zhang S, Wanek W (2020) Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil Biol Biochem 141:107660. https://doi.org/10.1016/j.soilbio.2019.107660

    CAS  Article  Google Scholar 

  81. Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: Measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Dekker, New York, pp 415–471. https://doi.org/10.1007/BF01420218

    Chapter  Google Scholar 

  82. Jensen E (1997) Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues. Biol Fert Soils 24:39–44

    CAS  Article  Google Scholar 

  83. Jian S et al (2016) Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biol Biochem 101:32–43. https://doi.org/10.1016/j.soilbio.2016.07.003

    CAS  Article  Google Scholar 

  84. Joergensen RG (2018) Amino sugars as specific indices for fungal and bacterial residues in soil. Biol Fert Soils 54:559–568. https://doi.org/10.1007/s00374-018-1288-3

    CAS  Article  Google Scholar 

  85. Kallenbach CM, Grandy AS (2011) Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a meta-analysis. Agric Ecosyst Environ 144:241–252. https://doi.org/10.1016/j.agee.2011.08.020

    Article  Google Scholar 

  86. Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630. https://doi.org/10.1038/ncomms13630

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Kallenbach CM, Wallenstein MD, Schipanksi ME, Grandy AS (2019) Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns potential outcomes, and a path forward. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01146

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kaur T, Brar BS, Dhillon NS (2008) Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system. Nutr Cycl Agroecosys 81:59–69. https://doi.org/10.1007/s10705-007-9152-0

    Article  Google Scholar 

  89. Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG (2016) Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271:115–123. https://doi.org/10.1016/j.geoderma.2016.02.019

    CAS  Article  Google Scholar 

  90. Kindler R, Miltner A, Thullner M, Richnow H-H, Kästner M (2009) Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Org Geochem 40:29–37. https://doi.org/10.1016/j.orggeochem.2008.09.005

    CAS  Article  Google Scholar 

  91. Kirk TK, Connors W, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl Environ Microb 32:192–194

    CAS  Article  Google Scholar 

  92. Kirkby C (2011) Influence of nutrient availability on changes in stable soil organic matter levels following crop stubble retention. Charles Sturt University, Wagga

    Google Scholar 

  93. Kirkby C, Kirkegaard J, Richardson A, Wade L, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of C:N:P: S ratios in Australian and other world soils. Geoderma 163:197–208. https://doi.org/10.1016/j.geoderma.2011.04.010

    CAS  Article  Google Scholar 

  94. Kirkby C, Richardson A, Wade L, Batten G, Blanchard C, Kirkegaard J (2013) Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol Biochem 60:77–86. https://doi.org/10.1016/j.soilbio.2013.01.011

    CAS  Article  Google Scholar 

  95. Kirkby C, Richardson A, Wade L, Conyers M, Kirkegaard J (2016) Inorganic nutrients increase humification efficiency and C-sequestration in an annually cropped soil. PLoS ONE 11:e0153698. https://doi.org/10.1371/journal.pone.0153698

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Kirkby C, Richardson A, Wade L, Passioura J, Batten G, Blanchard C, Kirkegaard J (2014) Nutrient availability limits carbon sequestration in arable soils. Soil Biol Biochem 68:402–409. https://doi.org/10.1016/j.soilbio.2013.09.032

    CAS  Article  Google Scholar 

  97. Kirkegaard JA, Conyers MK, Hunt JR, Kirkby CA, Watt M, Rebetzke GJ (2014) Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agric Ecosyst Environ 187:133–145. https://doi.org/10.1016/j.agee.2013.08.011

    Article  Google Scholar 

  98. Kleber M (2010) What is recalcitrant soil organic matter? Environ Chem 7:320–332. https://doi.org/10.1071/EN10006

    CAS  Article  Google Scholar 

  99. Kleber M, Jian-Ping H, Stahr K (1998) Microbial biomass C-and N-dynamics in grassland soils amended with liquid manure. J Plan Nutr Soil Sc 161:87–92. https://doi.org/10.1002/jpln.1998.3581610114

    CAS  Article  Google Scholar 

  100. Knicker H (2011) Soil organic N: an under-rated player for C sequestration in soils? Soil Biol Biochem 43:1118–1129. https://doi.org/10.1016/j.soilbio.2011.02.020

    CAS  Article  Google Scholar 

  101. Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162. https://doi.org/10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  102. Kögel-Knabner I (2017) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol Biochem 105:A3–A8. https://doi.org/10.1016/j.soilbio.2016.08.011

    CAS  Article  Google Scholar 

  103. Kögel-Knabner I, Rumpel C (2018) Advances in molecular approaches for understanding soil organic matter composition, origin, and turnover: a historical overview. In: Sparks DL (ed) Advances in Agronomy, vol 149. Academic Press, Amsterdam, pp 1–48. doi: 10.1016/bs.agron.2018.01.003

  104. Kögel-Knabner I et al (2008) Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J Plan Nutr Soil Sci 171:61–82. https://doi.org/10.1002/jpln.200700048

    CAS  Article  Google Scholar 

  105. Kragt ME, Dumbrell NP, Blackmore L (2017) Motivations and barriers for Western Australian broad-acre farmers to adopt carbon farming. Environ Sci Policy 73:115–123. https://doi.org/10.1016/j.envsci.2017.04.009

    Article  Google Scholar 

  106. Kramer MG, Sollins P, Sletten RS, Swart PK (2003) N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84:2021–2025. https://doi.org/10.1890/02-3097

    Article  Google Scholar 

  107. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5

    CAS  Article  Google Scholar 

  108. Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. Net Phytol 198:656–669. https://doi.org/10.1111/nph.12235

    CAS  Article  Google Scholar 

  109. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. https://doi.org/10.1126/science.1097396

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Lal R (2013) Soil carbon management and climate change. Carbon Manag 4:439–462. https://doi.org/10.4155/cmt.13.31

    CAS  Article  Google Scholar 

  111. Lavallee JM, Soong JL, Cotrufo MF (2019) Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biol. https://doi.org/10.1111/gcb.14859

    Article  Google Scholar 

  112. Lehmann J, Kinyangi J, Solomon D (2007) Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85:45–57. https://doi.org/10.1007/s10533-007-9105-3

    Article  Google Scholar 

  113. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. https://doi.org/10.1038/nature16069

    CAS  Article  PubMed  Google Scholar 

  114. Liang C, Amelung W, Lehmann J, Kästner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biol 25:3578–3590. https://doi.org/10.1111/gcb.14781

    Article  Google Scholar 

  115. Liang C, Schimel JP, Jastrow JD (2017) The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2:17105. https://doi.org/10.1038/nmicrobiol.2017.105

    CAS  Article  PubMed  Google Scholar 

  116. Liang Q, Chen H, Gong Y, Fan M, Yang H, Lal R, Kuzyakov Y (2012) Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain. Nutr Cycl Agroecosyst 92:21–33. https://doi.org/10.1007/s10705-011-9469-6

    Article  Google Scholar 

  117. Liu L, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13:819–828. https://doi.org/10.1111/j.1461-0248.2010.01482.x

    Article  PubMed  Google Scholar 

  118. Lu M, Zhou X, Luo Y, Yang Y, Fang C, Chen J, Li B (2011) Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric Ecosyst Environ 140:234–244

    CAS  Article  Google Scholar 

  119. Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314. https://doi.org/10.1016/j.soilbio.2011.07.020

    CAS  Article  Google Scholar 

  120. Ma T et al (2018) Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat Commun 9:3480. https://doi.org/10.1038/s41467-018-05891-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Machado P, Sohi S, Gaunt J (2003) Effect of no-tillage on turnover of organic matter in a Rhodic Ferralsol. Soil Use Manag 19:250–256. https://doi.org/10.1111/j.1475-2743.2003.tb00311.x

    Article  Google Scholar 

  122. Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 80:89–106. https://doi.org/10.1890/09-0179.1

    Article  Google Scholar 

  123. Marschner B et al (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plan Nutr Soil Sci 171:91–110. https://doi.org/10.1002/jpln.200700049

    CAS  Article  Google Scholar 

  124. McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286. https://doi.org/10.1016/0016-7061(81)90024-0

    CAS  Article  Google Scholar 

  125. McGill WB, Shields JA, Paul EA (1975) Relation between carbon and nitrogen turnover in soil organic fractions of microbial origin. Soil Biol Biochem 7:57–63. https://doi.org/10.1016/0038-0717(75)90032-2

    CAS  Article  Google Scholar 

  126. Meurer KHE, Haddaway NR, Bolinder MA, Kätterer T (2018) Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil: a systematic review using an ESM approach. Earth-Sci Rev 177:613–622. https://doi.org/10.1016/j.earscirev.2017.12.015

    CAS  Article  Google Scholar 

  127. Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55. https://doi.org/10.1007/s10533-011-9658-z

    CAS  Article  Google Scholar 

  128. Minasny B et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86. https://doi.org/10.1016/j.geoderma.2017.01.002

    Article  Google Scholar 

  129. Möller K (2018) Soil fertility status and nutrient input–output flows of specialised organic cropping systems: a review. Nutr Cycl Agroecosyst 112:147–164. https://doi.org/10.1007/s10705-018-9946-2

    CAS  Article  Google Scholar 

  130. Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00022

    Article  PubMed  PubMed Central  Google Scholar 

  131. Morais TG, Teixeira RFM, Domingos T (2019) Detailed global modelling of soil organic carbon in cropland, grassland and forest soils. PLoS ONE 14:e0222604. https://doi.org/10.1371/journal.pone.0222604

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Moran KK, Six J, Horwath WR, van Kessel C (2005) Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Sci Soc Am J 69:1730–1736

    CAS  Article  Google Scholar 

  133. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248. https://doi.org/10.1023/A:1009740530221

    CAS  Article  Google Scholar 

  134. Mueller T, Jensen LS, Nielsen N, Magid J (1998) Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field. Soil Biol Biochem 30:561–571. https://doi.org/10.1016/S0038-0717(97)00178-8

    CAS  Article  Google Scholar 

  135. Murphy BW (2015) Impact of soil organic matter on soil properties: a review with emphasis on Australian soils. Soil Res 53:605–635. https://doi.org/10.1071/SR14246

    CAS  Article  Google Scholar 

  136. Nottingham AT, Turner BL, Stott AW, Tanner EVJ (2015) Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol Biochem 80:26–33. https://doi.org/10.1016/j.soilbio.2014.09.012

    CAS  Article  Google Scholar 

  137. Olk D, Cassman KG, Schmidt-Rohr K, Anders M, Mao J-D, Deenik J (2006) Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biol Biochem 38:3303–3312. https://doi.org/10.1016/j.soilbio.2006.04.009

    CAS  Article  Google Scholar 

  138. Orgill S, Condon J, Kirkby C, Orchard B, Conyers M, Greene R, Murphy B (2017) Soil with high organic carbon concentration continues to sequester carbon with increasing carbon inputs. Geoderma 285:151–163. https://doi.org/10.1016/j.geoderma.2016.09.033

    CAS  Article  Google Scholar 

  139. Otsuka Y, Sonoki T, Ikeda S, Kajita S, Nakamura M, Katayama Y (2003) Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol β-aryl ether linkages. FEBS J 270:2353–2362. https://doi.org/10.1046/j.1432-1033.2003.03545.x

    CAS  Article  Google Scholar 

  140. Palm C, Blanco-Canqui H, DeClerck F, Gatere L, Grace P (2014) Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ 187:87–105. https://doi.org/10.1016/j.agee.2013.10.010

    Article  Google Scholar 

  141. Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, San Diego

    Google Scholar 

  142. Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biol 24:1–12

    Article  Google Scholar 

  143. Phillips M, Weihe HD, Smith N (1930) The decomposition of lignified materials by soil microorganisms. Soil Sci 30:383–390

    CAS  Article  Google Scholar 

  144. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Global Change Biol 6:317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  145. Powlson DS, Hirsch PR, Brookes PC (2001) The role of soil microorganisms in soil organic matter conservation in the tropics. Nutr Cycl Agroecosyst 61:41–51. https://doi.org/10.1023/A:1013338028454

    Article  Google Scholar 

  146. Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG (2014) Limited potential of no-till agriculture for climate change mitigation. Nat Clim Change 4:678. https://doi.org/10.1038/nclimate2292

    Article  Google Scholar 

  147. Rachkova N, Shuktomova I, Taskaev A (2004) Influence of acidity and uranyl nitrate concentration on the efficiency of recovery of uranium (VI) from aqueous solutions with hydrolytic wood lignin. Russ J Appl Chem 77:467–470. https://doi.org/10.1023/B:RJAC.0000031293.63930.b5

    CAS  Article  Google Scholar 

  148. Ramirez KS, Craine JM, Fierer N (2010) Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied. Soil Biol Biochem 42:2336–2338

    CAS  Article  Google Scholar 

  149. Richardson AE, Kirkby CA, Banerjee S, Kirkegaard JA (2014) The inorganic nutrient cost of building soil carbon. Carbon Manag 5:265–268. https://doi.org/10.1080/17583004.2014.923226

    CAS  Article  Google Scholar 

  150. Robbins SG, Voss RD (1991) Phosphorus and potassium stratification in conservation tillage systems. J Soil Water Conserv 46:298–300

    Google Scholar 

  151. Rochette P, Angers DA, Flanagan LB (1999) Maize residue decomposition measurement using soil surface carbon dioxide fluxes and natural abundance of carbon-13. Soil Sci Soc Am J 63:1385–1396. https://doi.org/10.2136/sssaj1999.6351385x

    CAS  Article  Google Scholar 

  152. Rousk J et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340. https://doi.org/10.1038/ismej.2010.58

    Article  PubMed  Google Scholar 

  153. Rumpel C (2008) Does burning of harvesting residues increase soil carbon storage. J Soil Sci Plant Nutr 8:44–51. https://doi.org/10.4067/S0718-27912008000200006

    Article  Google Scholar 

  154. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter: a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. https://doi.org/10.1007/s11104-010-0391-5

    CAS  Article  Google Scholar 

  155. Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci 114:9575–9580. https://doi.org/10.1073/pnas.1706103114

    CAS  Article  PubMed  Google Scholar 

  156. Sauvadet M, Lashermes G, Alavoine G, Recous S, Chauvat M, Maron P-A, Bertrand I (2018) High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biol Biochem 123:64–73. https://doi.org/10.1016/j.soilbio.2018.04.026

    CAS  Article  Google Scholar 

  157. Schefe CR et al (2015) 100 Years of superphosphate addition to pasture in an acid soil: current nutrient status and future management. Soil Res 53:662–676. https://doi.org/10.1071/sr14241

    CAS  Article  Google Scholar 

  158. Schimel J, Schaeffer S (2012) Microbial control over carbon cycling in soil. Front Microbiol. https://doi.org/10.3389/fmicb.2012.00348

    Article  PubMed  PubMed Central  Google Scholar 

  159. Schipper LA, Mudge PL, Kirschbaum MUF, Hedley CB, Golubiewski NE, Smaill SJ, Kelliher FM (2017) A review of soil carbon change in New Zealand’s grazed grasslands. N J Agr Res 60:93–118. https://doi.org/10.1080/00288233.2017.1284134

    CAS  Article  Google Scholar 

  160. Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cycles 14:777–793. https://doi.org/10.1029/1999gb001208

    CAS  Article  Google Scholar 

  161. Silvan N, Vasander H, Karsisto M, Laine J (2003) Microbial immobilisation of added nitrogen and phosphorus in constructed wetland buffer. Appl Soil Ecol 24:143–149. https://doi.org/10.1016/S0929-1393(03)00092-1

    Article  Google Scholar 

  162. Simpson AJ, Simpson MJ, Smith E, Kelleher BP (2007) Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070–8076. https://doi.org/10.1021/es071217x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. Simpson MJ, Simpson AJ (2012) The chemical ecology of soil organic matter molecular constituents. J Chem Ecol 38:768–784. https://doi.org/10.1007/s10886-012-0122-x

    CAS  Article  PubMed  Google Scholar 

  164. Sistla SA, Schimel JP (2012) Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. Net Phytol 196:68–78. https://doi.org/10.1111/j.1469-8137.2012.04234.x

    CAS  Article  Google Scholar 

  165. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31. https://doi.org/10.1016/j.still.2004.03.008

    Article  Google Scholar 

  166. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241:155–176. https://doi.org/10.1023/A:1016125726789

    CAS  Article  Google Scholar 

  167. Six J, Frey S, Thiet R, Batten K (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569. https://doi.org/10.2136/sssaj2004.0347

    CAS  Article  Google Scholar 

  168. Smith P (2008a) Land use change and soil organic carbon dynamics. Nutr Cycl Agroecosyst 81:169–178. https://doi.org/10.1007/s10705-007-9138-y

    Article  Google Scholar 

  169. Smith P et al (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813. https://doi.org/10.1098/rstb.2007.2184

    CAS  Article  Google Scholar 

  170. Sokol NW, Bradford MA (2019) Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci 12:46

    CAS  Article  Google Scholar 

  171. Sokol NW, Sanderman J, Bradford MA (2019) Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biol 25:12–24

    Article  Google Scholar 

  172. Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105. https://doi.org/10.1016/S0016-7061(96)00036-5

    Article  Google Scholar 

  173. Sollins P et al (2006) Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biol Biochem 38:3313–3324. https://doi.org/10.1016/j.soilbio.2006.04.014

    CAS  Article  Google Scholar 

  174. Spohn M (2016) Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic Appl Ecol 17:471–478. https://doi.org/10.1016/j.baae.2016.05.003

    Article  Google Scholar 

  175. Stevenson F, Cole M (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, vol 2. John Wiley & Sons, New York

    Google Scholar 

  176. Stock SC et al (2019) Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale. Geoderma 337:973–982. https://doi.org/10.1016/j.geoderma.2018.10.030

    CAS  Article  Google Scholar 

  177. Stockmann U et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99. https://doi.org/10.1016/j.agee.2012.10.001

    CAS  Article  Google Scholar 

  178. Strickland MS et al (2010) Rates of in situ carbon mineralization in relation to land-use, microbial community and edaphic characteristics. Soil Biol Biochem 42:260–269. https://doi.org/10.1016/j.soilbio.2009.10.026

    CAS  Article  Google Scholar 

  179. Strickland MS, Rousk J (2010) Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395. https://doi.org/10.1016/j.soilbio.2010.05.007

    CAS  Article  Google Scholar 

  180. Swift R (2001) Sequestration of carbon by soil. Soil Sci. https://doi.org/10.1097/00010694-200111000-00010

    Article  Google Scholar 

  181. Tautges NE, Chiartas JL, Gaudin ACM, O'Geen AT, Herrera I, Scow KM (2019) Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Global Change Biol. https://doi.org/10.1111/gcb.14762

    Article  Google Scholar 

  182. Thamo T, Pannell DJ (2016) Challenges in developing effective policy for soil carbon sequestration: perspectives on additionality, leakage, and permanence. Clim Policy 16:973–992. https://doi.org/10.1080/14693062.2015.1075372

    Article  Google Scholar 

  183. Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010) Pattern and variation of C:N: P ratios in China’s soils: a synthesis of observational data. Biogeochemistry 98:139–151. https://doi.org/10.1007/s10533-009-9382-0

    CAS  Article  Google Scholar 

  184. Tieszen LL, Tappan GG, Touré A (2004) Sequestration of carbon in soil organic matter in Senegal: an overview. J Arid Environ 59:409–425. https://doi.org/10.1016/j.jaridenv.2004.04.002

    Article  Google Scholar 

  185. Tipping E, Somerville CJ, Luster J (2016) The C:N:P: S stoichiometry of soil organic matter. Biogeochemistry 130:117–131. https://doi.org/10.1007/s10533-016-0247-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  186. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    CAS  Article  Google Scholar 

  187. van Groenigen JW, van Kessel C, Hungate BA, Oenema O, Powlson DS, van Groenigen KJ (2017) Sequestering soil organic carbon: a nitrogen dilemma. Environ Sci Technol 51:4738–4739. https://doi.org/10.1021/acs.est.7b01427

    CAS  Article  PubMed  Google Scholar 

  188. von Lützow M, Kögel-Knabner I (2010) Response to the concept paper: 'What is recalcitrant soil organic matter?' by Markus Kleber. Environ Chem 7:333–335. https://doi.org/10.1071/EN10085

    CAS  Article  Google Scholar 

  189. von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review. Eur J Soil Sci 57:426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x

    CAS  Article  Google Scholar 

  190. von Lützow M, et al (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plan Nutr Soil Sci 171:111–124. https://doi.org/10.1002/jpln.200700047

    CAS  Article  Google Scholar 

  191. Waksman SA, Tenney FG (1928) Composition of natural organic materials and their decomposition in the soil: III. The influence of nature of plant upon the rapidity of its decomposition. Soil Sci 26:155

    CAS  Article  Google Scholar 

  192. Waring BG, Averill C, Hawkes CV (2013) Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models. Ecol Lett 16:887–894. https://doi.org/10.1111/ele.12125

    Article  PubMed  Google Scholar 

  193. Wiechmann ML, Hurteau MD, Kaye JP, Miesel JR (2015) Macro-particle charcoal C content following prescribed burning in a mixed-conifer forest, Sierra Nevada, California. PLoS ONE 10:e0135014

    Article  Google Scholar 

  194. Williams EK, Fogel ML, Berhe AA, Plante AF (2018) Distinct bioenergetic signatures in particulate versus mineral-associated soil organic matter. Geoderma 330:107–116. https://doi.org/10.1016/j.geoderma.2018.05.024

    CAS  Article  Google Scholar 

  195. Xu X, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr 22:737–749. https://doi.org/10.1111/geb.12029

    Article  Google Scholar 

  196. Zang H, Wang J, Kuzyakov Y (2016) N fertilization decreases soil organic matter decomposition in the rhizosphere. Appl Soil Ecol 108:47–53

    Article  Google Scholar 

  197. Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154:349–359. https://doi.org/10.1007/s00442-007-0836-6

    Article  PubMed  Google Scholar 

  198. Zhong W, Cai Z (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Soil Ecol 36:84–91. https://doi.org/10.1016/j.apsoil.2006.12.001

    Article  Google Scholar 

  199. Zimmermann M et al (2012) Rapid degradation of pyrogenic carbon. Global Change Biol 18:3306–3316. https://doi.org/10.1111/j.1365-2486.2012.02796.x

    Article  Google Scholar 

Download references

Acknowledgements

ECC was supported by an Australian Government Research Training Program (RTP) Scholarship, an Australian National University (ANU) Dean’s Merit Higher Degree Research (HDR) Supplementary Scholarship in Science and a Commonwealth Scientific and Industrial Research Organisation (CSIRO) postgraduate scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alan E. Richardson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coonan, E.C., Kirkby, C.A., Kirkegaard, J.A. et al. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutr Cycl Agroecosyst 117, 273–298 (2020). https://doi.org/10.1007/s10705-020-10076-8

Download citation

Keywords

  • Nutrient cycling
  • FOM
  • POM
  • C:N:P:S ratio
  • Lignin
  • Agronomy