Nutrient Cycling in Agroecosystems

, Volume 113, Issue 3, pp 349–363 | Cite as

Nitrogen, phosphorus and potassium accumulation and partitioning by the potato group Andigenum in Colombia

  • Manuel Iván Gómez
  • Stanislav MagnitskiyEmail author
  • Luis Ernesto Rodríguez


Accumulation curves for nitrogen (Naccum), phosphorus (Paccum), and potassium (Kaccum) obtained from total dry biomass (W) can be employed for the prognosis of potato production in the Andean region, along with analysis of nutrient partitioning derived from the nutrient harvest index (NHI, PHI, KHI). This research established accumulation curves and translocation curves for N, P, and K using allometric relationships in the potato cultivars Diacol Capiro and Pastusa Suprema (Solanum tuberosum, group Andigenum), cultivated in soils with high and low fertility. The best fit of the accumulation model was obtained with the low fertility soils for the ‘Supremaʼ (Naccum = 68.13W0.504, Paccum = 6.724W0.779, and Kaccum = 63.93W0.776), which expressed the highest production potential and high values of NHI (0.55–0.69), PHI (0.75–0.8) and KHI (0.62). The ‘Capiro’ was better adapted to the changes in soil fertility than the ‘Supremaʼ since the models for nutrient accumulation in the ‘Capiro’ were significant for both levels of soil fertility. The efficiency of N, P, and K translocation into tubers followed a positive logarithmic model, which showed differences in favor of the ‘Capiro’ in the translocation efficiency of mineral nutrients. The accumulation of N, P, and K was established per cultivar and per phenological stage of growth, with up to 33% more P extracted by tubers in the ‘Capiro’ than in the ‘Supremaʼ and a comparable extraction of N and K by tubers in both cultivars.


Harvest index Translocation efficiency Accumulation curve Macronutrient extraction Solanum tuberosum 



The authors are grateful for the help of the Faculty of Agricultural Sciences, National University of Colombia in developing this research. We acknowledge the valuable support of Ingeplant SAS and Fedepapa (Colombia) for funding and laboratory analysis. The authors express their gratitude to research assistants Mrs. Paola Torres, Mrs. Liliana Arevalo, Mr. Elías Silva, and Mrs. Andrea Barragán for help in the field. We also thank the growers Mr. Walter Guzmán of Biogenética, Mr. Yovanny Pulido, and Mr. Ricardo Rojas for providing logistic service to this research. The authors thank Mr. Johan Urquijo for his help with data analysis.


  1. Abdallah F, Olivier M, Goffart J, Minet O (2016) Establishing the nitrogen dilution curve for potato cultivar Bintje in Belgium. Potato Res 59:241–258. CrossRefGoogle Scholar
  2. Andre CM, Ghislain M, Bertin P, Oufir M, del Rosario Herrera M, Hoffmann L, Hausman JF, Larondelle Y, Evers D (2007) Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J Agric Food Chem 55:366–378. CrossRefGoogle Scholar
  3. Andriolo JL, Bisognin DA, De Paula AL, Matielo De Paula FL, Dos Santos R, Teixeira BG (2006) Curva crítica de diluição de nitrogênio da cultivar Asterix de batata. Pesq Agropecu Bras 41:1179–1184CrossRefGoogle Scholar
  4. Ata-Ul-Karim S, Zhu T, Yao YX, Cao W (2014) Determination of critical nitrogen dilution curve based on leaf area index in rice. Field Crops Res 167:76–85. CrossRefGoogle Scholar
  5. Bélanger G, Walsh JR, Richards JE, Milburn PH, Ziadi N (2001) Critical nitrogen curve and nitrogen nutrition index for potato in Eastern Canada. Am J Potato Res 78:355–364. CrossRefGoogle Scholar
  6. Bowen W, Cabrera H, Barrera VH, Baigorria G (1999) Simulating the response of potato to applied nitrogen. In: Impact on a Changing World. Program report 1997–98. International Potato Center, Peru, pp 381–386Google Scholar
  7. Castro H, Gómez MI (2013) Fertilidad y fertilizantes. In: Burbano H, Silva F (eds) Ciencia del Suelo – Principios Básicos. Sociedad Colombiana de la Ciencia del Suelo, Bogotá, pp 231–304Google Scholar
  8. Chung HJ, Li XQ, Kalinga D, Lim ST, Yada R, Liu Q (2014) Physicochemical properties of dry matter and isolated starch from potatoes grown in different locations in Canada. Food Res Int 57:89–94. CrossRefGoogle Scholar
  9. Cogo CM, Andriolo JL, Bisognin DA, dos Santos R, Bortolotto OC, da Luz GL (2006) Relação potássio-nitrogênio para o diagnóstico e manejo nutricional da cultura da batata. Pesq Agropecu Bras 41:1781–1786CrossRefGoogle Scholar
  10. Fernandes AM, Soratto RP (2012) Nutrition, dry matter accumulation and partitioning and phosphorus use efficiency of potato grown at different phosphorus levels in nutrient solution. Rev Bras Ciênc Solo 36:1528–1537. CrossRefGoogle Scholar
  11. Fernandes AM, Soratto RP, Souza ED, Job AL (2017) Nutrient uptake and removal by potato cultivars as affected by phosphate fertilization of soils with different levels of phosphorus availability. Rev Bras Ciênc Solo 41:1–23. CrossRefGoogle Scholar
  12. Fontes PC, Braun H, de Castro Silva MC, Silva F, Cecon PR, Partelli FL (2016) Tuber yield prognosis model and agronomic nitrogen use efficiency of potato cultivars. Aust J Crop Sci 10:933–939. CrossRefGoogle Scholar
  13. Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning, and yield. Annu Rev Plant Physiol 32:485–509. CrossRefGoogle Scholar
  14. Giletto C, Echeverría H (2015) Critical nitrogen dilution curve in processing potato cultivars. Am J Plant Sci 6:3144–3156. CrossRefGoogle Scholar
  15. Gómez MI, Magnitskiy S, Rodríguez LE, Darghan E (2017) Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. ssp. andigena) under contrasting soils of the Andean region of Colombia. Agron Colomb 35:59–67. CrossRefGoogle Scholar
  16. Griffiths CA, Paul MJ, Foyer CH (2016) Metabolite transport and associated sugar signaling systems underpinning source/sink interactions. Biochim Biophys Acta Bioenerg 1857:1715–1725. CrossRefGoogle Scholar
  17. Haeder HE, Mengel K, Forster H (1973) The effect of potassium on translocation of photosynthates and yield pattern of potato plants. J Sci Food Agric 24:1479–1487. CrossRefGoogle Scholar
  18. Hardigan MA, Laimbeer FP, Newton L, Crisovan E, Hamilton JP, Vaillancourt B, Wiegert-Rininger K, Wood JC, Douches DS, Farré EM, Veilleux RE, Buell CR (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. PNAS 114:E9999–E10008. CrossRefGoogle Scholar
  19. IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales) (2017) Reportes Meteorológicos y Climáticos Estación Villa Inés (Facatativá) y Silos (Chocontá) 2012–2016. IDEAM, BogotáGoogle Scholar
  20. IGAC (Instituto Geográfico Agustín Codazzi) (2006) Métodos Analíticos de Laboratorios de Suelo y Tejidos. IGAC, BogotáGoogle Scholar
  21. Jenkins PD, Mahmood S (2003) Dry matter production and partitioning in potato plants subjected to combined deficiencies of nitrogen, phosphorus and potassium. Ann Appl Biol 143:215–229. CrossRefGoogle Scholar
  22. Kang W, Fan M, Ma Z, Shi X, Zheng H (2014) Luxury absorption of potassium by potato plants. Am J Potato Res 91:573–578. CrossRefGoogle Scholar
  23. Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Faucher M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:1–21. CrossRefGoogle Scholar
  24. Leonel M, Carmo EL, Fernandes AM, Franco CM, Soratto RP (2016) Physico-chemical properties of starches isolated from potato cultivars grown in soils with different phosphorus availability. J Sci Food Agric 96:1900–1905. CrossRefGoogle Scholar
  25. Liu B, Zhao S, Wu X, Wang X, Nan Y, Wang D, Chen Q (2017) Identification and characterization of phosphate transporter genes in potato. J Biotechnol 264:17–28. CrossRefGoogle Scholar
  26. Oosterhuis DM, Loka DA, Kawakami EM, Pettigrew WT (2014) The physiology of potassium in crop production. Adv Agron 126:203–233. CrossRefGoogle Scholar
  27. Pacheco Á, Vargas M, Alvarado G, Rodríguez F, Crossa J, Burgueño J (2015) GEA-R (Genotype × Environment Analysis with R for Windows). CIMMYT (distributor). Accessed 24 May 2018
  28. Sandaña P, Kalazich J (2015) Ecophysiological determinants of tuber yield as affected by potato genotype and phosphorus availability. Field Crops Res 180:21–28. CrossRefGoogle Scholar
  29. Santos CM, Segura AM, Ñústez CE (2010) Análisis de crecimiento y relación fuente-demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de Zipaquirá (Cundinamarca, Colombia). Rev Fac Nac Agron Medellin 63:5253–5266Google Scholar
  30. SAS Institute (2014) Base SAS 9.4 procedures guide: statistical procedures. SAS Institute Inc, CaryGoogle Scholar
  31. Schilling G, Eibner H, Schmidt L, Peiter E (2016) Yield formation of five crop species under water shortage and differential potassium supply. J Plant Nutr Soil Sci 179:234–243. CrossRefGoogle Scholar
  32. Snyder J, Desborough S, Holm D (1977) Accumulation of protein, non-protein nitrogen and starch during tuber growth of three potato cultivars. Am Potato J 54:545–555. CrossRefGoogle Scholar
  33. Soil Survey Staff (2010) Keys to soil taxonomy, 9th edn. USDA Soil Conservation Service, Washington D.CGoogle Scholar
  34. Svenson S, Aide M (2017) Evaluation of potato potassium, phosphorus, and sulfur uptake and leaching under center pivot irrigation in Southeastern Missouri. Int J Appl Agric Res 12:309–319Google Scholar
  35. Swain EY, Rempelos L, Orr CH, Hall G, Chapman R, Almadni M, Stockdale EA, Kidd J, Leifert C, Cooper JM (2014) Optimizing nitrogen use efficiency in wheat and potatoes: interactions between genotypes and agronomic practices. Euphytica 199:119–136. CrossRefGoogle Scholar
  36. Valbuena R, Roveda G, Bolaños A, Zapata J, Medina C, Almanza P, Porras D (2010) Escalas Fenológicas de las Variedades de Papa Parda Pastusa, Diacol Capiro y Criolla “Yema de Huevo” en las Zonas Productoras de Cundinamarca, Boyacá, Nariño y Antioquia. Produmedios, BogotáGoogle Scholar
  37. Wolf S, Marani A, Rudich J (1990) Effects of temperature and photoperiod on assimilate partitioning in potato plants. Ann Bot 66:513–520. CrossRefGoogle Scholar
  38. Zamuner EC, Lloveras J, Echeverría HE (2016) Use of a critical phosphorus dilution curve to improve potato crop nutritional management. Am J Potato Res 93:392–403. CrossRefGoogle Scholar
  39. Zebarth BJ, Tarn TR, De Jong H, Murphy A (2008) Nitrogen use efficiency characteristics of andígena and diploid potato selections. Am J Potato Res 85:210–218. CrossRefGoogle Scholar
  40. Zhao B, Ata-Ul-Karim ST, Liu Z, Ning D, Xiao J, Liu Z, Xiao J, Liu Z, Qin A, Nan J, Duan A (2017) Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crops Res 208:60–68. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad Ciencias AgrariasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations