Advertisement

Nutrient Cycling in Agroecosystems

, Volume 111, Issue 1, pp 47–60 | Cite as

Bean yield and economic response to fertilizer in eastern and southern Africa

  • K. C. Kaizzi
  • A. R. Cyamweshi
  • C. N. Kibunja
  • C. Senkoro
  • D. Nkonde
  • R. Maria
  • C. S. Wortmann
Original Article
  • 64 Downloads

Abstract

Bean (Phaseolus vulgaris L.) is important in sub-Saharan Africa for human dietary protein. Low yields are attributed to biotic and abiotic constraints including inadequate nutrient availability. Research was conducted to determine nutrient response functions for bean production areas of Kenya, Mozambique, Rwanda, Tanzania, and Zambia. Mean trial yields ranged from 0.32 to 2.60 and 1.72 to 2.89 Mg ha−1 for bush and climbing bean, respectively. Response to N was common except in Kenya and Mozambique. The main effect of P and K increased yield in Rwanda only but P and K effects were inconsistent in Zambia. Mean yield increase with a diagnostic treatment containing Mg–S–Zn–B was 0.41 and 0.58 Mg ha−1 for bush and climbing bean, respectively, in Rwanda and 0.36 Mg ha−1 in Tanzania with no effects in other countries. In Rwanda, the economically optimal rates (EOR) of N, P and K were > 20 kg ha−1, but higher with less costly fertilizer. Variations in EOR for growth type varied with nutrient. The EOR of N in Tanzania and Zambia were generally < 10 kg ha−1, depending on fertilizer costs, but P and K application had profit potential only in Rwanda. Yield, agronomic efficiency and profit to cost ratio, averaged across nutrients, were 36% less, 54% greater and 96% greater, respectively, with nutrients applied at 50% compared with 100% of EOR. Profit potential for the EOR of N is high when expected yield is > 1.5 Mg ha−1 but responses to P, K and Mg–S–Zn–B vary with bean production area.

Keywords

Nitrogen Phosphorus Pulse Nutrient response 

Abbreviations

AE

Agronomic efficiency

CP

The cost for application of a nutrient relative to bean grain value expressed as grain required for the cost of nutrient (kg kg−1)

EOR

Economically optimum rate or the rate with maximum net returns per ha due to nutrient application

Mg–S–Zn–B

A treatment for diagnosis of deficiencies

PCR

Profit to cost ratio for a nutrient applied to bean

SY

Site-year

Notes

Acknowledgements

We are grateful to the Alliance for Green Revolution in Africa (AGRA) for funding the project, to CAB International for managing the implementation, and to the University of Nebraska-Lincoln for providing scientific and advisory support for the project Optimizing Fertilizer Recommendations in Africa. The high level of cooperation of cooperating farmers, field assistants and extension agents in the efficient implementation of the trials is highly appreciated.

References

  1. Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp)—model food legumes. Plant Soil 252:55–128CrossRefGoogle Scholar
  2. Cyamweshi AR, Kayumba J, Nabahunga NL (2017) Optimizing fertilizer use within the context of integrated soil fertility management in Rwanda. In: Wortmann CS, Sones K (eds) Fertilizer use optimization in sub-Saharan Africa. CABI, London, pp 165–175.  https://doi.org/10.1079/9781786392046.0164 Google Scholar
  3. Floor J (1984) Response of dry beans (Phaseolus vulgaris L.) to the application of fertilizers in Kenya. Technical Bulletin No. 5, National Horticultural Research Station, Thika, Kenya, p 24Google Scholar
  4. Franzen DW (2015) Sulfate-sulfur. In Recommended soil test procedures for the North Central Region. North Central Regional Research Publication No. 221, Missouri Agric Exp Sta SB 1001, Chapter 8, pp 8.1–8.6Google Scholar
  5. Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CAB International, WallingfordCrossRefGoogle Scholar
  6. Gondwe B, Nkonde D (2017) Optimizing fertilizer use within the context of integrated soil fertility management in Zambia. In: Wortmann CS, Sones K (eds) Fertilizer use optimization in sub-Saharan Africa. CABI, London, pp 210–219.  https://doi.org/10.1079/9781786392046.0210 CrossRefGoogle Scholar
  7. Jansen J, Wortmann CS, Stockton MC, Kaizzi KC (2013) Maximizing net returns to financially constrained fertilizer use. Agron J 105:573–578.  https://doi.org/10.2134/agronj2012.0413 CrossRefGoogle Scholar
  8. Jones A, Breuning-Madsen H, Brossard M, Dampha A, Deckers J, Dewitte O et al (eds) (2013) Soil atlas of Africa. European Commission, Publications Office of the European Union, Luxembourg, p 176Google Scholar
  9. Kaizzi CK, Wortmann C, Byalebeka J, Semalulu O, Alou I, Zimwanguyizza W, Nansamba A, Musinguzi P, Ebanyat P, Hyuha T (2012a) Optimizing smallholder returns to fertilizer use: bean, soybean and groundnut. Field Crops Res 127:109–119CrossRefGoogle Scholar
  10. Kaizzi CK, Byalebeka J, Semalulu O, Alou I, Zimwanguyizza W, Nansamba A, Musinguzi P, Ebanyat P, Hyuha T, Wortmann CS (2012b) Sorghum response to fertilizer and nitrogen use efficiency in Uganda. Agron J 104:83–90.  https://doi.org/10.2134/agronj2012.0413 CrossRefGoogle Scholar
  11. Kaizzi CK, Byalebeka J, Semalulu O, Alou I, Zimwanguyizza W, Nansamba A, Musinguzi P, Ebanyat P, Hyuha T, Wortmann CS (2012c) Maize response to fertilizer and nitrogen use efficiency in Uganda. Agron J 104:73–82.  https://doi.org/10.2134/agronj2011.0181 CrossRefGoogle Scholar
  12. Kaizzi CK, Mohammed MB, Maman N (2017) Fertilizer use optimization: principles and approaches. In: Wortmann CS, Sones K (eds) Fertilizer use optimization in sub-Saharan Africa. CABI, London, pp 9–19.  https://doi.org/10.1079/9781786392046.0009 CrossRefGoogle Scholar
  13. Kibunja CN, Ndungu-Magiroi KW, Wamae DK, Mwangi TJ, Nafuma L, Koech MN, Ademba J, Kitonyo EM (2017) Optimizing fertilizer use within the context of integrated soil fertility management in Kenya. In: Wortmann CS, Sones K (eds) Fertilizer use optimization in sub-Saharan Africa. CABI, London, pp 82–99.  https://doi.org/10.1079/9781786392046.0082 CrossRefGoogle Scholar
  14. Maria R, Americano J, Matusso J, Gundana C (2017) Optimizing fertilizer use within the context of integrated soil fertility management in Mozambique. In: Wortmann CS, Sones K (eds) Fertilizer use optimization in sub-Saharan Africa. CABI, London, pp 125–135CrossRefGoogle Scholar
  15. Otsyula RM, Ajanga SI, Buruchara RA, Wortmann CS (1998) Development of an integrated bean root rot control strategy for western Kenya. Afr Crop Sci J 6:61–68CrossRefGoogle Scholar
  16. Pachico D (1993) The demand for bean technology. In: Henry G (ed) Trends in CIAT commodities. CIAT, Cali, pp 60–73Google Scholar
  17. Senkoro CJ, Ley GJ, Marandu AE, Wortmann C, Mzimbiri M, Msaky J, Umbwe R, Lyimo SD (2017) Optimizing fertilizer use within the context of integrated soil fertility management in Tanzania. In: Wortmann CS, Sones K (eds) Fertilizer use optimization in sub-Saharan Africa. CABI, London, pp 176–192.  https://doi.org/10.1079/9781786392046.0176 CrossRefGoogle Scholar
  18. Shapiro CS, Ferguson RB, Hergert GW, Wortmann CS, and Walters DT (2009) Fertilizer suggestions for corn. University of Nebraska–Lincoln Extension EC117, Lincoln, NEGoogle Scholar
  19. Shepherd KD, Walsh MG (2007) Infrared spectroscopy—enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. JNIRS 15:1–19Google Scholar
  20. Smithson JB, Edje OT, Giller KE (1993) Diagnosis and correction of soil nutritional problems of common bean (Phaseolus vulgaris) in the Usambara Mountains of Tanzania. J Agric Sci 120:233–240CrossRefGoogle Scholar
  21. Stephens D (1969) The effects of fertilizers, manure, and trace elements in contin-uous cropping rotations in southern and western Uganda. East Afr Agric For J 34:401–417CrossRefGoogle Scholar
  22. Tarfa BD, Maman N, Ouattara K, Serme I, Adeogun TA, Arunah UL, Wortmann CS (2017) Groundnut and soybean response to nutrient application in West Africa. Agron J 109:1–10.  https://doi.org/10.2134/agronj2017.03.0132 CrossRefGoogle Scholar
  23. Terhoeven-Urselmans T, Vagen TG, Spaargaren O, Shepherd KD (2010) Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library. Soil Sci Soc Am J 74:1792–1799CrossRefGoogle Scholar
  24. Towett EK, Shepherd KD, Sila A, Aynekulu E, Cadisch G (2015) Mid-infrared and total x-ray fluorescence spectroscopy complementarity for assessment of soil properties. Soil Sci Soc Am J 79:1375–1385CrossRefGoogle Scholar
  25. Watson ME (2015) Boron. In: Recommended soil test procedures for the North Central Region. North Central Regional Research Publication No. 221, Missouri Agric Exp Sta SB 1001, pp 10.1–10.4Google Scholar
  26. Wendt JW, Rijpma J (1997) Sulphur, zinc, and boron deficiencies in the Dedza Hills and Thiwi-Lifidzi regions of Malawi. Trop Agric 74:81–89Google Scholar
  27. Whitney DA (2015) Micronutrients: zinc, iron, manganese and copper. In: Recommended soil test procedures for the North Central Region. North Central Regional Research Publication No. 221, Missouri Agricultural Experiment Station SB 1001, pp 9.1–9.4Google Scholar
  28. Wortmann CS (2001) Nutrient dynamics in a climbing bean and sorghum crop rotation in the central Africa highlands. Nutr Cycl Agroecosyst 61:267–272.  https://doi.org/10.1023/a:101377651 CrossRefGoogle Scholar
  29. Wortmann CS (2006) Phaseolus vulgaris L. (common bean). In: Brink M Belay G (eds) Plant resources of tropical Africa 1. Cereals and pulses. PROTA Foundation, Wageningen, Netherlands/Blackhuys Publishers, Leiden, Netherlands/CTA, Wageningen, Netherlands. pp 146–151. http://www.prota4u.org/protav8.asp?h=M4&t=Phaseolus,vulgaris&p=Phaseolus+vulgaris+(common+bean)
  30. Wortmann CS, Kaizzi CK (2015) Optimization of financially constrained fertilizer use. In: Chatterjee A, Clay D (eds) Soil fertility management in agroecosystems, ASA, CSSA, and SSSA, Madison.  https://doi.org/10.2134/soilfertility.2014.0088
  31. Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998a) An atlas of common bean (Phaseolus vulgaris L.) production in Africa. Centro Internacional de Agricultura Tropical, Cali. http://www.ciat.cgiar.org/africa/pdf/atlas_bean_africa/contents.pdf. ISBN 958-9439-94-2
  32. Wortmann CS, Silver-Rwakaikara M, Lynch J (1998b) Efficiency of nitrogen acquisition and utilization in common bean (Phaseolus vulgaris L) in Uganda. Afr Crop Sci J 6:273–282Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • K. C. Kaizzi
    • 1
  • A. R. Cyamweshi
    • 2
  • C. N. Kibunja
    • 3
  • C. Senkoro
    • 4
  • D. Nkonde
    • 5
  • R. Maria
    • 6
  • C. S. Wortmann
    • 7
  1. 1.National Agricultural Research Laboratories (NARL), KawandaKampalaUganda
  2. 2.Rwanda Agricultural Board (RAB)KigaliRwanda
  3. 3.KALRO-KabeteNairobiKenya
  4. 4.Mlingano Agricultural Research InstituteTangaTanzania
  5. 5.Mt. Makuku Research StationZambia Agricultural Research Institute (ZARI)LusakaZambia
  6. 6.Instituto de Investigacao Agraria de Mocambique, (IIAM)MaputoMozambique
  7. 7.Department of Agronomy and HorticultureUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations