Skip to main content

Advertisement

Log in

Land use affected nutrient mass with minor impact on stoichiometry ratios in Pampean soils

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The effect of land use on soil nitrogen (N) and phosphorous (P) stocks and the stoichiometry ratios are not fully understood. We determined the impact of land use on total N and P stocks along with some of their fractions and carbon (C), N and P ratios in soils of the Pampas. The effect of human activities on N and P fluxes in agroecosystems was also assessed. We sampled 386 soils under contrasting land uses down to 1 m depth. Well drained uncultivated soils were used as control treatment, paired with forest, cropped and flooded soils. Significant effects of land use on N and P stocks were detected to 1 m depth. Cropping decreased soil total N and P contents, mineralizable N and extractable P by an average of 14, 21 and 63% respectively. Conversely, forest soils had larger total N stocks (17%), mineralization (10%) and extractable P (37%) than uncropped controls. Flooded lands had the lowest fertility. Nitrogen and P pools under cultivation decreased higher as soils had higher initial levels N and P. In some low fertility soils, cropping led to N and P increases. Stoichiometry ratios were minimally impacted by land use. The ratio of the cumulative P surface balance to the N surface balance for the last 140 years was + 0.01 kg P/kg N in uncropped control soils and − 0.08 kg P/kg N in cropped soils. Despite this difference, the soil N/P ratio was unaffected by land use indicating that processes at the profile level regulated it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alvarez R, Lavado RS (1998) Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma 83:127–141

    Article  Google Scholar 

  • Alvarez R, Steinbach HS (2011) Modeling apparent nitrogen mineralization under field conditions using regressions an artificial neural networks. Agron J 103:1159–1168

    Article  Google Scholar 

  • Alvarez R, Steinbach HS (2017) Modeling soil test phosphorus changes under fertilized and unfertilized managements using artificial neural networks. Agron J. https://doi.org/10.2134/agronj2017.01.0014

    Google Scholar 

  • Alvarez R, Steinbach HS, Bono A (2011) An artificial neural network approach for predicting soil carbon budget in agroecosystems. Soil Sci Soc Am J 75:965–975

    Article  CAS  Google Scholar 

  • Alvarez R, Steinbach HS, De Paepe JL (2014) A regional audit of nitrogen fluxes in Pampean agroecosystems. Agric Ecosyst Environ 184:1–8

    Article  CAS  Google Scholar 

  • Alvarez CR, Steinbach HS, De Paepe JL (2015) Fertilizer use in Pampean agroecosystems: impact on productivity and nutrient balance. In: Sinha S, Pant KK, Bajrai S, Govil JN (eds) Chemical engineering series (ISBN 1-62699-041-7), fertilizer technology, vol 2: biofertilizers (ISBN 1-62699-047-9), vol 15. Studdium Press LLC, Houston, pp 352–368

    Google Scholar 

  • Alvarez R, Steinbach HS, De Paepe JL (2016) Historical balance of nitrogen, phosphorus, and sulfur of the Argentine Pampas. Ciencia del Suelo 34:231–244

    Google Scholar 

  • Bai Z, Li H, Yang X, Zhou B, Shi X, Wang B, Li D, Shen J, Chen Q, Qin W, Oenema O, Zhang F (2013) The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 372:27–37

    Article  CAS  Google Scholar 

  • Batjes NH (2000) Effects of mapped variation in soil conditions on estimates of soil carbon and nitrogen stocks for South America. Geoderma 97:135–144

    Article  CAS  Google Scholar 

  • Berhongaray G, Alvarez R, De Paepe JL, Caride C, Cantet RJC (2013) Land use effects on soil carbon in the Argentine Pampas. Geoderma 192:97–110

    Article  CAS  Google Scholar 

  • Bernoux M, Arrouays D, Cerri CC, Bourennane H (1998) Modeling vertical distribution of carbon in Oxisols of the western Brazilian Amazon (Rondonia). Soil Sci 163:941–951

    Article  CAS  Google Scholar 

  • Bouwman L, Goldewijk KK, Van der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E (2013) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. PNAS 110:20882–20887

    Article  CAS  PubMed  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods, Soil Science Society of America Book Series, vol 5. Soil Science Society of America, Inc., Madison, pp 1085–1121

  • Bui EN, Henderson BL (2013) C:N: P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil 373:553–568

    Article  CAS  Google Scholar 

  • Buschiazzo DE, Hevia GG, Urioste AM, Hepper EN (2000) Cultivation effects on phosphate forms and sorption in loess-soils of Argentina. Soil Sci 165:427–436

    Article  CAS  Google Scholar 

  • Chaneton EJ, Lemcoff JH, Lavado RS (1996) Nitrogen and phosphorus cycling in grazed and ungrazed plots in a temperature subhumid grassland in Argentina. J Appl Ecol 33:291–302

    Article  Google Scholar 

  • Chen M, Ma LQ (2001) Taxonomic and geographic distribution of total phosphorus in Florida surface soils. Soil Sci Soc Am J 65:1539–1547

    Article  CAS  Google Scholar 

  • Chen CR, Hou EQ, Condron LM, Bacon G, Esfandbod M, Olley J, Turner BL (2015) Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosecuence, southern Queensland, Australia. Geoderma 257–258:4–13

    Article  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Colman BP, Schimel JP (2013) Drivers of microbial respiration and net N mineralization at the continental scale. Soil Biol Biochem 60:65–76

    Article  CAS  Google Scholar 

  • Crews TE, Brookes PC (2014) Changes in soil phosphorus forms through time in perennial versus annual agroecosystems. Agric Ecosyst Environ 184:168–181

    Article  CAS  Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedkey fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214

    Article  CAS  Google Scholar 

  • David MB, Mclaac G, Darmody RG, Omonode RA (2009) Long-term changes in Mollisol organic carbon and nitrogen. J Environ Qual 38:200–211

    Article  CAS  PubMed  Google Scholar 

  • De Klein CAM, Van Logtestijn RSP (1996) Denitrification in grassland soils in The Netherlands in relation to irrigation, N-application rate, soil water content and soil temperature. Soil Biol Biochem 28:231–237

    Article  Google Scholar 

  • De Paepe JL, Alvarez R (2013) Developments of a soil productivity index using an artificial neural network approach. Agron J 105:1803–1813

    Article  Google Scholar 

  • Deng Q, Cheng X, Yang Y, Zhang Q, Luo Y (2014) Carbon-nitrogen interactions during afforestation in central China. Soil Biol Biochem 69:119–122

    Article  CAS  Google Scholar 

  • Dessureault J, Zebarth BJ, Burton DL, Georgallas A (2015) Predicting soil nitrogen supply from soil properties. Can J Soil Sci 95:63–75

    Article  Google Scholar 

  • Di Ciocco C, Penón E, Coviella C, López S, Díaz-Zorita M, Momo M, Alvarez R (2011) Nitrogen fixation by soybean in the Pampas: relationship between yield and soil nitrogen balance. Agrochimica 40:305–313

    Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global ecosystem. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  • Dodd MB, Lauenroth WK, Burke IC (2000) Nitrogen availability through a coarse-textured soil profile in the shortgrass steppe. Soil Sci Soc Am J 64:391–398

    Article  CAS  Google Scholar 

  • Ebeling A, Bundy L, Kittell A, Ebeling D (2006) Evaluation of the Bray P1 soil test on Eastern red soils in Wisconsin. In: Proceedings of the 2006 Wisconsin fertilizer, aglime & pest management conferences, vol 45, pp 296–306

  • FAOSTAT (2014) http://faostat.fao.org/. Accessed 21 June 2014

  • Fila G, Bellocchi G, Acutis M, Donatelli M (2003) IRENE: a software to evaluate model performance. Eur J Agron 18:369–372

    Article  Google Scholar 

  • Franzluebbers AJ, Follett RF (2005) Greenhouse gas contributions and mitigation potential in agricultural regions of North America: introduction. Soil Tillage Res 83:1–8

    Article  Google Scholar 

  • Galantini JA, Rossell RA (1997) Organic fractions, N, P and S changes in an Argentine semiarid Haplustoll under different crop sequences. Soil Tillage Res 42:221–228

    Article  Google Scholar 

  • Gami SK, Lauren JG, Duxbury JM (2009) Influence of soil texture and cultivation on carbon and nitrogen levels in soils of the eastern Indo-Gangetic Plains. Geoderma 153:304–311

    Article  CAS  Google Scholar 

  • Genxu W, Haiyan M, Ju Q, Juan C (2004) Impact of land use changes on soil carbon, nitrogen and phosphorus and water pollution in an arid region of northwest China. Soil Use Manag 20:32–39

    Article  Google Scholar 

  • Guo LB, Gifford M (2002) Soil carbon stocks and land use change: a meta-analysis. Glob Change Biol 8:345–360

    Article  Google Scholar 

  • Hall AJ, Rebella C, Guersa C, Culot J (1992) Field-crop system of the Pampas. In: Pearson CJ (ed) Field crop ecosystems. Elsevier, Amsterdam

    Google Scholar 

  • Hass HJ, Evans CE, Miles EF (1957) Nitrogen and carbon changes in great plains soils as influenced by cropping and soil treatments. United States Department of Agriculture Tech. Bull., vol 1164, 111 pp

  • Hobbs JA, Thompson CA (1971) Effect of cultivation on the nitrogen and organic carbon contents of a Kansas Argiustoll (Chernozem). Agron J 63:66–68

    Article  Google Scholar 

  • INDEC (2002) Censo nacional de población, hogares y viviendas. http://www.indec.gov.ar/agropecuario/cna.asp. Accessed 10 Jan 2012

  • INTA (2010) http://geointa.inta.gov.ar. Accessed 11 Mar 2012

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  CAS  PubMed  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2007) Groundwater and soil chemicals changes under phreatophytic tree plantation. J Geophys Res 112:1–15

    Article  Google Scholar 

  • Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: its efficient use in agriculture. Adv Agron 123:177–288

    Article  CAS  Google Scholar 

  • Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56:655–671

    Article  CAS  Google Scholar 

  • Kader MA, Sleutel S, Begum SA, D’Haene K, Jegajeevagan K, De Neve S (2010) Soil organic matter fractionation as a tool for predicting nitrogen mineralization in silty arable soils. Soil Use Manag 26:494–507

    Article  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 5:983–997

    Article  Google Scholar 

  • Kirby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils. Geoderma 163:197–208

    Article  Google Scholar 

  • Kobayashi K, Salam MU (2000) Comparing simulated and measured values using mean square deviation and its components. Agron J 92:345–352

    Article  Google Scholar 

  • Kuo S (1996) Chapter 32: Phosphorus. In: Sparks DL (ed) Methods of soil analysis. Soil Science Society of America Book Series, Part 3—Chemical methods, vol 5. Soil Science Society of America, Inc., Madison, p 869–919

  • Li M, Zhou X, Zhang Q, Cheng X (2014) Consequences of afforestation for soil nitrogen dynamics in central China. Agric Ecosyst Environ 183:40–46

    Article  CAS  Google Scholar 

  • Li C, Zhao L, Sun P, Zhao F, Kang D, Yang G, Han X, Feng Y, Ren G (2016) Deep soil C, N and P stocks and stoichiometry in response to land use patterns in the Loess Hilly Region of China. PLoS ONE 11(7):e0159075. http://doi.org/10.1016/j.agee.2013.10.018

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Shao M, Wang Y (2013) Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 197–198:67–78

    Article  Google Scholar 

  • Lobe I, Sandhage-Hofmann A, Brodowski S, du Preez CC, Amelung W (2011) Aggregate dynamics and associated soil organic matter contents as influenced by prolonged arable cropping in the South African Highveld. Geoderma 162:251–259

    Article  CAS  Google Scholar 

  • Malo DD, Schumacher TE, Doolittle JJ (2005) Long-term cultivation impacts on selected soil properties in the northern Great Plains. Soil Tillage Res 81:277–281

    Article  Google Scholar 

  • Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:17–233

    Article  Google Scholar 

  • McCulley RL, Burke IC, Lauenroth WK (2009) Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America. Oecologia 159:571–581

    Article  PubMed  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286

    Article  CAS  Google Scholar 

  • Mcgroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forest worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    Article  Google Scholar 

  • MinAgro (Ministerio de Agroindustria) (2017) http://www.agroindustria.gob.ar. Accessed 06 June 2017

  • Mortenson MC, Schuman GE, Ingram LJ (2004) Carbon sequestration in rangelands interseeded wuth yellow-flowering alfalfa (Medicago sativa ssp. Falcate). Environ Manage 33:475–481

    Article  Google Scholar 

  • Mudge PL, Schipper LA, Baisden WT, Ghani A, Lewis RW (2014) Changes in soil C, N and δ15N along three forest-pasture chronosequences in New Zealand. Soil Res 52:27–37

    Article  CAS  Google Scholar 

  • Mulvaney RL (1996) Nitrogen-inorganic forms. In: Sparks DL (ed) Methods of soil analysis. Part 3—chemical methods. Soil Science Society of America, Madison, pp 1123–1184

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Murphy DV, Sparling GP, Fillery RP (1998) Stratification of microbial biomass C and N and gross N mineralization with soil depth in two contrasting Western Australian agricultural soils. Aust J Soil Res 36:45–55

    Article  Google Scholar 

  • Negassa W, Leinweber P (2009) How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J Plant Nutr Soil Sci 172:305–325

    Article  CAS  Google Scholar 

  • OECD (2001) OECD national soil surface nitrogen balances. www.oecd.org/arg/env/indicators.htm. Accessed 20 Nov 2014

  • OECD (2008) Environmental performance of agriculture in OECD countries since 1990, p 208. www.oecd.org/publishing/corrigenda. Accessed 20 Nov 2014

  • Oenema O, Kros H, Vries W (2003) Approaches and uncertainties in nutrients budgets: implications for nutrient management and environmental policies. Eur J Agron 20:3–16

    Article  Google Scholar 

  • Panten K, Rogasik J, Godlinski F, Funder U, Greef J, Schung E (2009) Gross soil surface nutrient balances: the OECD approach implemented under German conditions. Agric For Res 59:19–28

    Google Scholar 

  • Papini R, Valboa G, Favili F, L’Abate G (2011) Influence of land use on organic carbon pool and chemical properties of Vertic Cambisols in central and southern Italy. Agric Ecosyst Environ 140:68–79

    Article  CAS  Google Scholar 

  • Paruelo JM, Piñeiro G, Baldi G, Baeza S, Lezama F, Altesor A, Oesterheld M (2010) Carbon stocks and fluxes in rangelands of the Río de la Plata basin. Rangel Ecol Manag 63:94–108

    Article  Google Scholar 

  • Peltier MR, Wilcox CJ, Sharp DC (1998) Technical note: application of the Box–Cox data transformation to animal science experiments. J Anim Sci 76:847–849

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis P, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934. https://doi.org/10.1038/ncomms3934

    PubMed  Google Scholar 

  • Purton K, Pennock D, Leinweber P, Walley F (2015) Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence. Geoderma 253–254:48–60

    Article  Google Scholar 

  • Putman DH, Summers CG, Orloff SO (2007) Alfalfa production systems in California, vol 8287. University of California, Oakland, p 18

    Google Scholar 

  • Qiao N, Xu X, Cao G, Ouyang H, Kuzyakov Y (2015) Land use change decreases soil carbon stocks in Tibetan grasslands. Plant Soil 395:231–241

    Article  CAS  Google Scholar 

  • Randall GW, Grava J (1971) Effect of soil: Bray °N 1 ratios on the amount of phosphorus extracted from calcareous Minnesota soils. Soil Sci Soc Am J 35:112–114

    Article  CAS  Google Scholar 

  • Reddy KR, Wetzel RG, Kadlec RH (2005). Biogeochemistry of phosphorus in wetlands. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. Agronomy Monograph 46, American Society of Agronomy, Madison, pp 263–316

  • Rennesson M, Dufey J, Legrain X, Genot V, Bock L, Colinet G (2013) Relationships between the P status of surface and deep horizons of agricultural soils under various cropping systems and for different soil types: a case study in Belgium. Soil Use Manag 29:103–113

    Article  Google Scholar 

  • Romano N, Alvarez R, Bono A, Steinbach HS (2015) Comparison of nitrogen fertilizer demand for wheat production between humid and semi-arid portions of the Argentinean Pampas using a mass balance approach. Arch Agron Soil Sci 61:1409–1422

    Article  CAS  Google Scholar 

  • Romano N, Alvarez R, Bono A (2017) Modeling nitrogen mineralization at surface and deep layers of sandy soils. Arch Agron Soil Sci 63:870–882

    Article  CAS  Google Scholar 

  • Rubaek GH, Kristensen K, Olesen SE, Ostergaard HS, Heckrath G (2013) Phosphorus accumulation and spatial distribution in agricultural soils. Geoderma 209–210:241–250

    Article  Google Scholar 

  • Rubio G, Alvarez R, Steinbach HS (2015) Fósforo del suelo en agrosistemas, Chapter 5. In: Alvarez R (ed) Fertilidad de suelos y fertilización en la Región Pampeana. Editorial Facultad de Agronomía, Universidad de Buenos Aires, Buenos aires, pp 147–164

    Google Scholar 

  • SAS Institute Inc. (2016) SAS/STAT® 14.2 user’s guide. SAS Institute Inc., Cary

    Google Scholar 

  • Satorre E, Slafer G (1999) Wheat production systems of the Pampas. In: Press ETH (ed) Wheat: ecology and physiology of yield determination. Food Products Press Inc, New York, pp 333–348

    Google Scholar 

  • Schipper LA, Sparling GP (2011) Accumulation of soil C and change in C: N ratio after establishment of pastures on reverted scrubland in New Zealand. Biogeochemistry 104:49–58

    Article  CAS  Google Scholar 

  • Searle SR (1971) Linear models. Wiley, New York

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (for complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Sharpley AN, Smith SJ (1983) Distribution of phosphorus forms in virgin and cultivated soils and potential erosion losses. Soil Sci Soc Am J 47:581–586

    Article  CAS  Google Scholar 

  • Slazak A, Matos ES, Nii-Annang S, Hüttl R (2014) Phosphorus pools in soil after land conversion from silvopasture to arable and grassland use. J Plant Nutr Soil Sci 177:159–167

    Article  CAS  Google Scholar 

  • Sleutel S, Kader MA, Begum SA, De Neve S (2010) Soil-organic-matter stability in sandy cropland soils is related to land-use history. J Plant Nutr Soil Sci 173:19–29

    Article  CAS  Google Scholar 

  • Smit A, Velthof GL (2010) Comparison of indices for the prediction of nitrogen mineralization after destruction of managed grassland. Plant Soil 331:139–150

    Article  CAS  Google Scholar 

  • Soriano A (1991) Río de la Plata Grasslands. In: Coupland RT (ed) Ecosystems of the world. 8A. Natural grassland. Elsevier, Amsterdam, pp 367–407

    Google Scholar 

  • Steffens M, Kölbl A, Totsche KU, Kögel-Knaber I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma 143:63–72

    Article  CAS  Google Scholar 

  • Studdert GA, Echeverría HE, Casanovas EM (1997) Crop-pasture rotation for sustaining the quality and productivity of a Typic Argiudoll. Soil Sci Soc Am J 61:1466–1472

    Article  CAS  Google Scholar 

  • Teruggi ME (1957) The nature and origin of argentine loess. J Sediment Petrol 27:322–332

    Google Scholar 

  • Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010) Patterns and variation of C:N:P ratios in China’s soils: a sintesis of observational data. Biogeochemistry 98:139–151

    Article  CAS  Google Scholar 

  • Turner BL, Laliberté E (2015) Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich Mediterranean scrubland in southwestern Australia. Ecosystems 18:287–309

    Article  CAS  Google Scholar 

  • Vejre H, Callesen I, Vesterdal L, Raulund-Rasmussen K (2003) Carbon and nitrogen in Danish forest soils-contents and distribution determined by soil order. Soil Sci Soc Am J 67:335–343

    Article  CAS  Google Scholar 

  • Viglizzo EF, Lértora F, Pordomingo AJ, Bernados JN, Roberto ZE, Del Valle H (2001) Ecological lessons and applications from one century of low external-input farming in the Pampas of Argentina. Agric Ecosyst Environ 83:65–81

    Article  Google Scholar 

  • Wu C, Wu J, Luo Y, Zhang L, DeGloria SD (2009) Spatial estimation of soil total nitrogen using cokriging with predicted soil organic matter content. Soil Sci Soc Am J 73:1676–1681

    Article  CAS  Google Scholar 

  • Yang Y, Guo J, Chen G, Yin YY, Gao R, Lin C (2009) Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant Soil 323:153–162

    Article  CAS  Google Scholar 

  • Young JL, Aldag RW (1982) Inorganic forms of nitrogen in soil. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Agronomy, vol 22. American Society of Agronomy Inc Publisher, Madison, pp 43–66

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Universidad de Buenos Aires (UBACYT 2011-2014, 20020100617; UBACYT 2014-2017, 20020130100484BA), the Consejo Nacional de Investigaciones Científicas y Técnicas (PID 084, 2016-2019) and the Agencia de Promoción Científica (PICT FONCyT 2009-2012, 37164). SAS Institute Inc. is acknowledged for the support with the use of its software due to an agreement with Facultad de Agronomía, Universidad de Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Alvarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, R., Gimenez, A., Caffaro, M.M. et al. Land use affected nutrient mass with minor impact on stoichiometry ratios in Pampean soils. Nutr Cycl Agroecosyst 110, 257–276 (2018). https://doi.org/10.1007/s10705-017-9896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-017-9896-0

Keywords

Navigation