Skip to main content
Log in

Biological nitrogen fixation in tropical dry forests with different legume diversity and abundance

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Tropical dry forests have high diversity and plant abundance of potentially biologically nitrogen fixing (BNF) legume species, attributed to the ecological advantage of fixation. However, there are few estimates of N quantities annually fixed, hindering the understanding of factors that control BNF, like low phosphorus availability. The quantities of N fixed in three dry forest (caatinga) fragments of the semiarid Brazilian northeastern region with different legume plant proportions were determined and seedlings of Mimosa tenuiflora were grown with phosphorous fertilized soil from the fragments to verify if lack of fixation was due to the absence of rhizobia populations or P deficiency. The vegetation of all areas was dominated by legume plants, mainly potentially nodulating ones, despite the relatively high soil N availability. M. tenuiflora was the most abundant nodulating legume in all fragments, with annual leaf productions from 800 to 1400 kg ha−1. BNF amounts were low (1.4, 18 and 3.6 kg ha−1 year−1 in the mature caatinga of Petrolina and in the mature and regenerating caatingas of São João, respectively) considering the high proportions of potentially nodulating plants (33, 61 and 82% of total plant basal area), because 80, 10 and 70% of these plants were not fixing and those fixing had only 20–46% of their N derived from the atmosphere. Since the pot grown seedlings nodulated abundantly, the low BNF could not be explained by absence of microsymbionts but likely to low symbiosis efficiency due to relatively high N and low P availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67. doi:10.1016/S0065-2504(08)60016-1

    Article  CAS  Google Scholar 

  • Aide TM, Clark ML, Grau HR, López-Carr D, Levy MA, Redo D, Bonilla-Moheno M, Riner G, Andrade-Núñez MJ, Muñiz M (2013) Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45(2):262–271. doi:10.1111/j.1744-7429.2012.00908.x

    Article  Google Scholar 

  • Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, use and nodulation. University of Wisconsin Press, Madison

    Book  Google Scholar 

  • Andrews M, James EK, Sprent JI, Boddey RM, Gross E, Reis FB Jr (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol Divers 4:131–140. doi:10.1080/17550874.2011.644343

    Article  Google Scholar 

  • Aranibar JN, Otter L, Macko SA, Feral CJW, Epstein HE, Dowty PR, Eckardt F, Shugart HH, Swap RJ (2004) Nitrogen cycling in the soil–plant system along a precipitation gradient in the Kalahari sands. Glob Chang Biol 10:359–373. doi:10.1046/j.1529-8817.2003.00698.x

    Article  Google Scholar 

  • Bala A, Murphy PJ, Osunde AO, Giller KE (2003) Nodulation of tree legumes and the ecology of their native rhizobial populations in tropical soils. Appl Soil Ecol 22(3):211–223

    Article  Google Scholar 

  • Banda RK, Delgado-Salinas A, Dexter KG, Linares-Palomino R, Oliveira-Filho A, Prado D, Pullan M, Quintana C, Riina R, Rodriguez MGM, Weintritt J, Acevedo-Rodriguez P, Adarve J, Alvarez E, Aranguren BA, Arteaga JC, Aymard G, Castano A, Ceballos-Mago N, Cogollo A, Cuadros H, Delgado F, Devia W, Duenas H, Fajardo L, Fernandez A, Fernandez MA, Franklin J, Freid EH, Galetti LA, Gonto R, Gonzalez MR, Graveson R, Helmer EH, Idarraga A, Lopez R, Marcano-Vega H, Martinez OG, Maturo HM, McDonald M, McLaren K, Melo O, Mijares F, Mogni V, Molina D, Moreno Nd.P, M. Nassar J, Neves DM, Oakley LJ, Oatham M, Olvera-Luna AR, Pezzini FF, Dominguez OJR, Rios ME, Rivera O, Rodriguez N, Rojas A, Sarkinen T, Sanchez R, Smith M, Vargas C, Villanueva B, Pennington RT (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353(6306):1383–1387

    Article  Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart P (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270. doi:10.1071/PP01058

    Article  Google Scholar 

  • Bontemps C, Elliott GN, Simon MF, Reis FB Jr, Gross E, Lawton RC, Elias Neto N, Loureiro MF, Faria SM, Sprent JI, James EK, Young JPW (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52. doi:10.1111/j.1365-294X.2009.04458.x

    Article  CAS  PubMed  Google Scholar 

  • Brower JE, Zar JH (1984) Field and laboratory methods for general ecology. Wm. C Brown Publishers, Dubuque

    Google Scholar 

  • Cleveland CC, Houlton BZ, Neil C, Reed SC, Townsend AR, Wang Y (2010) Using indirect methods to constrain symbiotic nitrogen fixation rates: a case study from an Amazonian rain forest. Biogeochemistry 99:1–13. doi:10.1007/s10533-009-9392-y

    Article  Google Scholar 

  • Crews TE (1993) Phosphorus regulation of nitrogen fixation in a traditional Mexican ecosystem. Biogeochemistry 21:141–166. doi:10.1007/BF00001115

    Article  CAS  Google Scholar 

  • Crews TE (1999) The presence of nitrogen fixing legumes in terrestrial communities: evolutionary versus ecological considerations. Biogeochemistry 46:233–246. doi:10.1007/BF01007581

    CAS  Google Scholar 

  • EMBRAPA (1997) Centro Nacional de Pesquisa de Solos, Manual de métodos de análises de solo. EMBRAPA—Centro Nacional de Pesquisa de Solos, Brasília

    Google Scholar 

  • EMBRAPA (2009) Centro Nacional de Pesquisa de Solos, Manual de análises químicas de solos, plantas e fertilizantes. EMBRAPA—Centro Nacional de Pesquisa de Solos, Brasília

    Google Scholar 

  • Faye A, Sall S, Chotte JL, Lesueur D (2007) Soil bio-functioning under Acacia nilotica var. tomentosa protected forest along the Senegal River. Nutr Cycl Agroecosyst 79:35–44. doi:10.1007/s10705-007-9093-7

    Article  Google Scholar 

  • Freitas ADS, Sampaio EVSB, Santos CERS, Fernandes AR (2010) Biological nitrogen fixation in tree legumes of the Brazilian semi-arid caatinga. J Arid Environ 74(3):344–349. doi:10.1016/j.jaridenv.2009.09.018

    Article  Google Scholar 

  • Freitas ADS, Borges WL, Andrade MMM, Sampaio EVSB, Santos CERS, Passos SR, Xavier GR, Mulato BM, Lyra MCCP (2014) Characteristics of nodule bacteria from Mimosa spp. grown in soils of the Brazilian semiarid region. Afr J Microbiol Res 8(8):788–796. doi:10.5897/AJMR2013.6518

    Article  Google Scholar 

  • Freitas ADS, Sampaio EVSB, Ramos APS, Barbosa MRV, Lyra RP, Araújo EL (2015) Nitrogen isotopic patterns in tropical forests along a rain fall gradient in Northeast Brazil. Plant Soil 391:109–122. doi:10.1007/s11104-015-2417-5

    Article  Google Scholar 

  • Gehring C, Muniz FH, Souza LAG (2008) Leguminosae along 2–25 years of secondary forest succession after slash-and-burn agriculture and in mature rain forest of Central Amazonia. J Torrey Bot Soc 135:388–400

    Article  Google Scholar 

  • Gentry AH (1995) Diversity and floristic composition of neotropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 146–194

    Chapter  Google Scholar 

  • Guedes RS, Zanella FCV, Costa-Júnior JEV, Santana GM, Silva JÁ (2012) Caracterização florísticofitossociológica do componente lenhoso de um trecho de caatinga no semiárido paraibano. Rev Caatinga 25:99-108

    Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x

    Article  Google Scholar 

  • Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA, Heaton THE, Schmidt S, Stewart GR (1999) The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199. doi:10.1071/PP98146

    Article  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Syst 40:613–635. doi:10.1146/annurev.ecolsys.37.091305.110246

    Article  Google Scholar 

  • Higgs AJ (1981) Island biogeography theory and nature reserve design. J Biogeogr 8(2):117–124. doi:10.2307/2844554

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. University of California, College of Agriculture, Agricultural Experiment Station, Davis, p 39

    Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil–plant systems. New Phytol 137:179–203. doi:10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  • Houlton BZ, Wang YY, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330. doi:10.1038/nature07028

    Article  CAS  PubMed  Google Scholar 

  • Leblanc HA, McGraw RL, Nygren P (2007) Dinitrogen-fixation by three neotropical agroforestry tree species under semi-controlled field conditions. Plant Soil 291:199–209. doi:10.1007/s11104-006-9186-0

    Article  CAS  Google Scholar 

  • Lima GAC, Sampaio EVSB, Almeida-Cortez JS (2013) Estrutura espacial e biomassa da parte aérea em diferentes estádios sucessionais de caatinga, em Santa Terezinha, Paraíba. Rev Bras Geo Fís 6(3):566–574

    Google Scholar 

  • Maass JM (1995) Conversion of tropical dry forest to pasture and agriculture. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 399–422

    Chapter  Google Scholar 

  • Martins JCR, Freitas ADS, Menezes RSC, Sampaio EVSB (2015) Nitrogen symbiotically fixed by cowpea and gliricidia in traditional and agroforestry systems under semiarid conditions. Pesqui Agropecu Bras 50(2):178–184. doi:10.1590/S0100-204X2015000200010

    Article  Google Scholar 

  • Medina ES, Vasquez AI, Moreno MP, Torres-Gonzalez A (2015) Island effect on diversity, abundance and vegetation structure in the Chocó Region. Acta Bot Bras 29(4):509–515. doi:10.1590/0102-33062015abb0154

    Article  Google Scholar 

  • Miles L, Newton AC, De Fries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505. doi:10.1111/j.1365-2699.2005.01424.x

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88. doi:10.1146/annurev.es.17.110186.000435

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1995) Dry forests of Central America and the Caribbean. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 9–34

    Chapter  Google Scholar 

  • Nardoto GB, Quesada CA, Patiño S, Saiz G, Baker TR, Schwarz M, Schrodt F, Feldpausch TR, Domingues TF, Marimon BS, Marimon BH Jr, Vieira ICG, Silveira M, Bird MI, Phillips OL, Lloyd J, Martinelli LA (2014) Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15N:14N measurements. Plant Ecol Divers 7:173–187. doi:10.1080/17550874.2013.807524

    Article  Google Scholar 

  • Ndiaye M, Ganry F (1997) Variation in the biological N2 fixation by tree legumes in three ecological zones from the north to the south of Senegal. Arid Soil Res Rehabil 11:245–254. doi:10.1080/15324989709381476

    Article  Google Scholar 

  • Ometto JPHB, Ehleringer JR, Domingues TF, Berry JA, Ishida FY, Mazzi E, Higuchi N, Flanagan LB, Nardoto GB, Martinelli LA (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79:251–274. doi:10.1007/s10533-006-9008-8

    Article  CAS  Google Scholar 

  • Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr 27:261–273. doi:10.1046/j.1365-2699.2000.00397.x

    Article  Google Scholar 

  • Pereira IM, Andrade LA, Sampaio EVSB, Barbosa MRV (2003) Use-history effects on structure and flora of caatinga. Biotropica 35:154–165. doi:10.1111/j.1744-7429.2003.tb00275.x

    Google Scholar 

  • Pons TL, Perreijn K, van Kessel C, Werger MJ (2007) Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment. New Phytol 173:154–167. doi:10.1111/j.1469-8137.2006.01895.x

    Article  CAS  PubMed  Google Scholar 

  • Queiroz LP (2006) The Brazilian caatinga: phytogeographical patterns inferred from distribution data of the Leguminosae. In: Pennington T, Lewis GP, Ratter JA (eds) Neotropical savannas and seasonally dry forests plant diversity, biogeography and conservation. CRC Press, New York, pp 121–157

    Chapter  Google Scholar 

  • Queiroz LP (2009) Leguminosas da caatinga. Universidade Estadual de Feira de Santana, Royal Botanic Gardens Kew, Associação Plantas do Nordeste, Feira de Santana

    Google Scholar 

  • Rastetter EB, Vitousek PM, Field C, Shaver GR, Herbert D, Agren GI (2001) Resource optimization and symbiotic nitrogen fixation. Ecosystems 4:369–388. doi:10.1007/s10021-001-0018-z

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101(30):11001–11006. doi:10.1073/pnas.0403588101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis FB Jr, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE, Loureiro MF, Queiroz LP, Scotti MR, Chen WM, Norén A, Rubio MC, Faria SM, Bontemps C, Goi SR, Young JPW, Sprent JI, James EK (2010) Nodulation and nitrogen fixation by Mimosa spp. in the cerrado and caatinga biomes of Brazil. New Phytol 186:934–946. doi:10.1111/j.1469-8137.2010.03267.x

    Article  PubMed  Google Scholar 

  • Roggy JC, Prévost MF, Garbaye J, Domenach AM (1999) Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using δ15N. J Trop Ecol 15:1–22

    Article  Google Scholar 

  • Sampaio EVSB (2010) Características e potencialidades. In: Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama P (eds) Uso sustentável e conservação dos recursos florestais da caatinga. Ministério do Meio Ambiente, Brasília, pp 29–48

  • Sampaio EVSB, Araújo EL, Salcedo IH, Tiessen H (1998) Regeneração da vegetação de caatinga após corte e queima em Serra Talhada, PE. Pesqui Agropecu Bras 33:621–632

    Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  • Silva GC, Sampaio EVSB (2008) Biomassas de partes aéreas em plantas da caatinga. Rev Árvore 32:567–575. doi:10.1590/S0100-67622008000300017

    Google Scholar 

  • Silveira MML, Araújo MSB, Sampaio EVSB (2006) Distribuição de fósforo em diferentes ordens de solo do semiárido da Paraíba e de Pernambuco. Rev Bras Ciênc Solo 30(2):281–291

    Article  Google Scholar 

  • Souza LQ, Freitas ADS, Sampaio EVSB, Moura PM, Menezes RSC (2012) How much nitrogen is fixed by biological symbiosis in tropical dry forest? 1. Trees and shrubs. Nutr Cycl Agroecosyst 94:171–179. doi:10.1007/s10705-012-9531-z

    Article  CAS  Google Scholar 

  • Sprent JI (2009) Legume nodulation: a global perspective. Wiley Black Well, Chichester

    Book  Google Scholar 

  • Swap RJ, Aranibar JN, Dowty PR, Gilhooly WP III, Macko SA (2004) Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Glob Chang Biol 10:350–358. doi:10.1111/j.1365-2486.2003.00702.x

    Article  Google Scholar 

  • Sylla SN, Ndoye I, Gueye M, Ba AT, Dreyfus B (2002) Estimates of biological nitrogen fixation by Pterocarpus lucens in a semi-arid natural forest park in Senegal using 15N natural abundance method. Afr J Biotechnol 1:50–56. doi:10.5897/AJB2002.000-009

    Article  CAS  Google Scholar 

  • Teixeira FCP, Reinert F, Rumjanek NG, Boddey RM (2006) Quantification of the contribution of biological nitrogen fixation to Cratylia mollis using the 15N natural abundance technique in the semi-arid caatinga region of Brazil. Soil Biol Biochem 38:1989–1993. doi:10.1016/j.soilbio.2005.11.013

    Article  CAS  Google Scholar 

  • Thomas RL, Sheard RW, Moyer JR (1967) Comparison of conventional and automated procedures for N, P and K analysis of plant material using a single digestion. Agron J 59:240–243

    Article  CAS  Google Scholar 

  • Van Groenigen K, Six J, Hungate BA, Graaff M, van Breemen N, van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci USA 103:6571–6574. doi:10.1073/pnas.0509038103

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas GG, Werden LK, Powers JS (2015) Explaining legume success in tropical dry forests based on seed germination niches: a new hypothesis. Biotropica 47(3):277–280. doi:10.1111/btp.12210

    Article  Google Scholar 

  • Vitousek PM, Matson PA (1988) Nitrogen transformations in a range of tropical forest soils. Soil Biol Biochem 20:361–367. doi:10.1016/0038-0717(88)90017-X

    Article  CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland CC, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli LA, Rastetter E, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45. doi:10.1023/A:1015798428743

    Article  Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc 368:20130119. doi:10.1098/rstb.2013.0119

    Article  Google Scholar 

  • Wang YP, Houlton BZ, Field CB (2007) A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Glob Biogeochem Cycles 21:1–15. doi:10.1029/2006GB002797

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Projeto Universal 2012, Processo 472997/2012-2) for the financial support. They also like to thank the technical support from Dr. Plínio B. Camargo and Edmar Mazzi (CENA/USP) and Dr. Segundo Urquiaga (Embrapa Agrobiologia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Dolores Santiago de Freitas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.F., de Freitas, A.D.S., Costa, T.L. et al. Biological nitrogen fixation in tropical dry forests with different legume diversity and abundance. Nutr Cycl Agroecosyst 107, 321–334 (2017). https://doi.org/10.1007/s10705-017-9834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-017-9834-1

Keywords

Navigation