Advertisement

Nutrient Cycling in Agroecosystems

, Volume 105, Issue 2, pp 157–168 | Cite as

Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoils and plant silicon uptake

  • T. Klotzbücher
  • A. Marxen
  • R. Jahn
  • D. Vetterlein
Original Article

Abstract

Silicon (Si) enhances the stress resistance of rice plants. Silicon cycling in paddy fields is, however, still poorly studied. We examined relationships between Si forms in topsoil and plant Si uptake for four Vietnamese and three Philippine regions (ten fields per region). Mean rice straw Si concentrations within regions ranged from 3.0 to 8.4 %. For most of the Vietnamese fields they were lower than the critical value of 5.0 %, suggesting Si limitation of plant growth. For fields with low Si availability, straw Si concentrations were positively related to acetate-extractable Si in topsoil (i.e., dissolved and adsorbed Si). Such a relationship was not found for fields with high Si availability, presumably due to a maximum Si uptake capacity of rice plants. Mean annual Si uptake by rice within regions ranged from 0.31 to 1.40 Mg Si ha−1 year−1. They are determined by the continuous supply of plant-available Si during the cropping season and by aboveground biomass production. Weatherable silicate minerals mainly determine spatial differences in supply of plant-available Si. Concentrations of alkaline carbonate-extractable Si in topsoil (an estimate of amorphous Si) largely differed between regions; (regional means of 2.2–16.7 g Si kg−1). The differences in concentrations and amounts in topsoil are not related to phytolith (i.e., amorphous Si in straw) input, presumably due to other yet uncertain factors on carbonate-extractable Si in soil (e.g., differences in phytolith solubility or contribution of non-phytolith sources to Si in the extracts).

Keywords

Silicon availability Rice Paddy fields Stress resistance Phytoliths 

Notes

Acknowledgments

This work has been sponsored by the LEGATO project of the Federal Mininstry of Education and Research (BMBF; funding codes 01LL0917A and 01LL0917N). We thank Josef Settele for coordinating the LEGATO project. We thank Nguyen Van Sinh, Nguyen Hung Manh, Ho Van Chien, Le Huu Hai Leonardo Marquez, Gertrudo Arida, Martin Wiemers, Markus Franzén, Sylvia Villareal, and Jesus Victor Bustamante for help in field work. Alexandra Boritzki, Claudia Hofmann-Jäniche, Andreas Rämmler, Jutta Fröhlich, Aleksey Prays, Susanne Horka, and Frederic Leuther helped in the laboratory. Finally, we thank two anonymous reviewers for helpful comments on earlier drafts of the manuscript.

Supplementary material

10705_2016_9782_MOESM1_ESM.doc (35 kb)
Supplementary material 1 (DOC 35 kb)

References

  1. Barão L, Clymans W, Vandenne F, Meire P, Conley DJ, Struyf E (2014) Pedogenic and biogenic alkaline-extracted silicon distribution along a temperate land-use gradient. Eur J Soil Sci 65:693–705CrossRefGoogle Scholar
  2. Carey JC, Fulweiler RW (2015) Human appropriation of biogenic silicon—the increasing role of agriculture. Funct Ecol. doi: 10.1111/1365-2435.12544
  3. Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8:2281–2293CrossRefGoogle Scholar
  4. Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68CrossRefPubMedGoogle Scholar
  5. Cornelis JT, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378CrossRefGoogle Scholar
  6. DeMaster DJ (1981) The supply and accumulation of silica in the marineenvironments. Geochim Cosmochim Acta 45:1715–1732CrossRefGoogle Scholar
  7. Desplanques V, Cary L, Mouret J-C, Trolard F, Bourrié G, Grauby O, Meunier JD (2006) Silicon transfers in a rice field in Camargue (France). J Geochem Explor 88:190–193CrossRefGoogle Scholar
  8. Dobermann A, Fairhurst TH (2000) Rice: nutrient disorders and nutrient management. International Rice Research Institute, Los BanosGoogle Scholar
  9. Dobermann A, Fairhurst TH (2002) Rice straw management. Better Crops Int 16:7–11Google Scholar
  10. Epstein E (1999) Silicon. Annu rev Plant Physiol Plant Mol Biol 50:641–646CrossRefPubMedGoogle Scholar
  11. Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951CrossRefGoogle Scholar
  12. Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206CrossRefGoogle Scholar
  13. Guntzer F, Keller C, Meunier J-D (2012a) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213CrossRefGoogle Scholar
  14. Guntzer F, Keller C, Poulton PR, McGrath SP, Meunier J-D (2012b) Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352:173–184CrossRefGoogle Scholar
  15. Haynes RJ (2014) A contemporary overview on silicon availability in agricultural soils. J Plant Nutr Soil Sci 177:831–844CrossRefGoogle Scholar
  16. Husnain Wakatsuki T, Setyorini D, Hermansah Sato K, Masunage T (2008) Silica availability in soils and river in two watersheds on Java Island, Indonesia. Soil Sci Plant Nutr 54:916–927CrossRefGoogle Scholar
  17. IUSS Working Group (2014) World reference base for soil resources 2014. World Soil Resources Reports No. 106. Food and Agriculture Organization, RomeGoogle Scholar
  18. Klotzbücher T, Marxen A, Vetterlein D, Schneiker J, Türke M, Sinh NV, Manh NH, Chien HV, Marquez L, Villareal S, Bustamante JV, Jahn R (2015a) Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl Ecol 16:665–673CrossRefGoogle Scholar
  19. Klotzbücher T, Leuther F, Marxen A, Vetterlein D, Horgan F, Jahn R (2015b) Forms and fluxes of potential plant-available silicon in irrigated lowland rice production (Laguna, the Philippines). Plant Soil 393:177–191CrossRefGoogle Scholar
  20. Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14CrossRefGoogle Scholar
  21. Kraska JE, Breitenbeck GA (2010) Survey of the silicon status of flooded rice in Louisiana. Agron J 102:523–529CrossRefGoogle Scholar
  22. Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442CrossRefPubMedGoogle Scholar
  23. Marxen A, Klotzbücher T, Jahn R, Kaiser K, Nguyen VS, Schmidt A, Schädler M, Vetterlein D (2016) Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil 398:153–163CrossRefGoogle Scholar
  24. Meunier J-D, Keller K, Guntzer F, Riotte J, Braun JJ, Anupama K (2014) Assessment of the 1 % Na2CO3 technique to quantify the phytolith pool. Geoderma 216:30–35CrossRefGoogle Scholar
  25. Puppe D, Ehrmann O, Kaczorek D, Wanner M, Sommer M (2015) The protozoic Si pool in temperate forest ecosystems—Quantification, abiotic controls and interactions with earthworms. Geoderma 243–244:196–204CrossRefGoogle Scholar
  26. Sakurai G, Satake A, Yamaji N, Mitani-Ueno N, Yokozawa M, Feugier FG, Ma JF (2015) In Silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots. Plant Cell Physiol 56:631–639CrossRefPubMedGoogle Scholar
  27. Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108CrossRefGoogle Scholar
  28. Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant-available Si in soils: a possible cause of declining rice yields. Commun Soil Sci Plant Anal 28:1245–1252CrossRefGoogle Scholar
  29. Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde 105:194–202CrossRefGoogle Scholar
  30. Settele J, Spangenberg JH, Heong KL, Burkhard B, Bustamante JV, Cabbigat J, Van Chien Ho, Escalada M, Grescho V, Hai Le Huu, Harpke A, Horgan FG, Hotes S, Jahn R, Kühn I, Marquez L, Schädler M, Tekken V, Vetterlein D, Villareal S, Westphal C, Wiemers M (2015) Agricultural landscapes and ecossystem services in South-East-Asia—the LEGATO-Project. Basic Appl Ecol 16:661–664CrossRefGoogle Scholar
  31. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329CrossRefGoogle Scholar
  32. Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochemistry 107:9–18CrossRefGoogle Scholar
  33. Tsujimoto Y, Muranaka S, Saito K, Asai H (2014) Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environments across Sub-Sahara Africa. Field Crop Res 155:1–9CrossRefGoogle Scholar
  34. Vandevenne F, Struyf E, Clymans W, Meire P (2012) Agricultural silica harvest: have humans created a new loop in the global silica cycle? Front Ecol Environ 10:243–248CrossRefGoogle Scholar
  35. Vandevenne F, Barão L, Ronchi B, Govers G, Meire P, Kelly EF, Struyf E (2015) Silicon pools in human impacted soils of temperate zones. Glob Biogeochem Cycles 29:1439–1450CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • T. Klotzbücher
    • 1
  • A. Marxen
    • 2
  • R. Jahn
    • 1
  • D. Vetterlein
    • 1
    • 2
  1. 1.Institute of Agricultural and Nutritional Sciences - Soil ScienceUniversity of HalleHalle (Saale)Germany
  2. 2.Department of Soil PhysicsHelmholtz Centre for Environmental Research GmbH - UFZHalle (Saale)Germany

Personalised recommendations