Skip to main content

Advertisement

Log in

Long term application of dairy cattle manure and pig slurry to winter cereals improves soil quality

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Organic fertilizers (manures and slurries) applied repeatedly over many cropping seasons favourably influence nutrient recycling, maintenance of soil organic matter (SOM), and improve soil quality parameters such as soil aggregation and porosity. These aspects are particularly relevant in Mediterranean environments characterized by low SOM. This study was set up in a subhumid Mediterranean area where two different trials, devoted to winter cereals, were fertilized with dairy cattle manure (DCM) or pig slurry (PS) for a period of 12 years. One objective of this research was to evaluate the impacts of these fertilization practices on aggregate stability and SOM fractions, when compared with a mineral N fertilizer and a control (no-N) treatment. Porosity and pore shape were also studied in PS plots. The use of DCM significantly increased water stable aggregates by up to 16.4–18.0 %. Slurry addition did not affect aggregation but it increased the area occupied by pores >65 µm. Soil organic carbon (SOC) and light organic fraction (0.05–0.2 mm) increased with DCM incorporation but in PS treatments the SOC increment was non-significant. Data from DCM and PS together showed a positive and significant linear relationship between SOC (p < 0.05, R2 = 0.60), SOC light fraction (p < 0.01, R2 = 0.75) and SOC light fraction at 0.05–0.2 mm size (p < 0.01, R2 = 0.83), with water-stable aggregate. The use of animal residues (DCM or PS), applied according to an N criterion, increased available phosphorus and potassium soil content while improving yields. The enrichment of soil nutrients with DCM and PS use requires further research in order to avoid potential environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DCM:

Dairy cattle manure

DM:

Dry matter

MF:

Mineral nitrogen fertilizer

MWD:

Mean weight diameter

PS:

Pig slurry

SOC:

Soil organic carbon

SOM:

Soil organic matter

WSA:

Water stable aggregates

References

  • AFNOR (2007) NF X 31-516. Qualité du sol. Fractionnement granulodensimétrique des matières organiques particulaires du sol dans l´eau. Association Française de Normalisation, La Plaine Saint-Denis, France

  • ALPHA (2012) Nitrogen (ammonia): 4500-NH3 B, preliminary distillation step and 4500-NH3 C, titrimetric method. In: Rice EW, Bridgewater L (eds) Standard methods for the examination of water and wastewaste, 2nd edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C., pp 401–411

    Google Scholar 

  • Amézqueta E, Singer MJ, Le Bissonnais Y (1996) Testing a new procedure for measuring water stable aggregation. Soil Sci Soc Am J 60:888–894

    Article  Google Scholar 

  • Bremer E, Jensen HH, Johnston AM (1994) Sensitivity of total light fraction and mineralizable organic matter to management practice in a Lethbridge soil. Can J Soil Sci 74:131–138

    Article  CAS  Google Scholar 

  • Brewster JL, Rowse HR, Bosch AD (1991) The effects of sub-seed placement of liquid N and P fertilizer on the growth and development of bulb onions over a range of plant densities using primed and non-primed seed. J Hortic Sci 66:551–557

    CAS  Google Scholar 

  • Calderon FJ, Mccarty GW, Reeves J III (2005) Analysis of manure and soil nitrogen mineralization during incubation. Biol Fertil Soils 41:328–336. doi:10.1007/s00374-005-0843-x

    Article  Google Scholar 

  • Choudhary M, Bailey LD, Grant CA (1996) Review of the use of swine manure in crop production: effects on yield and composition and on soil and water quality. Waste Manag Res 14:581–595

    Article  CAS  Google Scholar 

  • COM (2012) Report from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions, The implementation of the soil thematic strategy and ongoing activities. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52012DC0046&from=EN. Accessed 5 Oct 2015

  • European Union (1991) Council Directive 91/676/EEC, of 12 December 1991, concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off J Eur Commun L 375:1–8

    Google Scholar 

  • Ferreira T, Rasband W (2012) ImageJ User guide. http://imagej.nih.gov/ij/docs/guide/user-guide.pdf. Accessed 5 Oct 2015

  • Gadgon B, Simard RR (1999) Nitrogen and phosphorus release from on-farm and industrial compost. Can J Soil Sci 79:481–489

    Article  Google Scholar 

  • Generalitat de Catalunya (2009a) Decret 136/2009, d’1 de setembre, d’aprovació del programa d’actuació aplicable a les zones vulnerables en relació amb la contaminació de nitrats que procedeixen de fonts agràries i de gestió de les dejeccions ramaderes. Diari Oficial de la Generalitat de Catalunya 5457:65858–65901

    Google Scholar 

  • Generalitat de Catalunya (2009b) ACORD GOV/128/2009, de 28 de juliol, de revisió i designació de noves zones vulnerables en relació amb la contaminació per nitrats procedents de fonts agràries. DOGC 5435:61692–61695

    Google Scholar 

  • Greenland DJ (1977) Soil damage by intensive arable cultivation: temporary or permanent? Philos Trans R Soc Lond 281:193–208. doi:10.1098/rstb.1977.0133

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Huang S, Peng XX, Huang QR, Zhang WJ (2010) Soil aggregation and organic carbon fractions affected by long term fertilization in a red soil in subtropical China. Geoderma 154:364–369. doi:10.1016/j.geoderma.2009.11.009

    Article  CAS  Google Scholar 

  • Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Erhard M, Hervás J, Hiederer R, Jeffery S, Lükewille A, Marmo L, Montanarella L, Olazábal C, Petersen JE, Penizek V, Strassburger T, Tóth, M, Van Den Eeckhaut, Van Liedekerke M, Verheijen F, Viestova E, Yigini Y (2012) JCR reference reports. The state of soil in Europe. A contribution of the JCR to the European Environment Agency’s Environment state and outlook report_SOER 2010. http://ec.europa.eu/dgs/jrc/downloads/jrc_reference_report_2012_02_soil.pdf. Accessed 5 Oct 2015

  • Kay BD (1998) Structure and organic carbon: a review. In: Lal R, Kimble JM, Follet RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, pp 169–197

    Google Scholar 

  • Kemper WD, Rosenau RC (1986) Aggregate stability and size distribution. In: Klute A (ed) Methods of soil analysis. Part I. Physical and mineralogical methods, 2nd edn Agron. Monogr. 9. ASA and SSSA, Madison, WI. pp 425–442

  • Le Bissonnais Y (1990) Experimental study and modelling of soil surface crusting processes. Catena Suppl 17:13–28

    Article  Google Scholar 

  • Leifeld J, Kögel-Knabner I (2005) Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma 124:143–155. doi:10.1016/j.geoderma.2004.04.009

    Article  CAS  Google Scholar 

  • Maillard E, Angers DA (2014) Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Change Biol 20:666–679. doi:10.1111/gcb.12438

    Article  Google Scholar 

  • MAPA (1989). Caracterizacionón climática de la provincial de Girona. Ministerio de Agricultura, Pesca y Alimentación. Secretaria Técnica provincial. Centro de publicaciones, Madrid, Spain, p 256

  • MAPA (1994). Métodos químicos de suelos. In: Ministerio de Agricultura, Pesca y Alimentación, editor. Métodos oficiales de Análisis. Tomo III. MAPA, Madrid, Spain, pp 281–283

  • Ndayegamiye A, Côte D (1989) Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties. Can J Soil Sci 69:39–47

    Article  Google Scholar 

  • Nyamangara J, Piha MI, Kirchmann H (1999) Interactions of aerobically decomposed cattle manure and nitrogen fertilizer applied to soil. Nutr Cycl Agroecosyst 54:183–188

    Article  Google Scholar 

  • Pagliai M, Antisari LV (1993) Influence of waste organic matter on soil micro- and macrostructure. Biores Technol 43:205–213. doi:10.1016/0960-8524(93)90032-7

    Article  CAS  Google Scholar 

  • Pagliai M, Vignozzi N, Pellegrini S (2004) Soil structure and the effect of management practices. Soil Till Res 79:131–143. doi:10.1016/j.still.2004.07.002

    Article  Google Scholar 

  • Paré T, Dinel H, Moulin AP, Townley-Smith L (1999) Organic matter quality and structural stability of a Black Chernozemic soil under different manure and tillage practices. Geoderma 91:311–326. doi:10.1016/S0016-7061(99)00011-7

    Article  Google Scholar 

  • Peterson GA, Lyon DJ, Fenster CR (2012) Valuing long-term field experiments: quantifiying the scientific contribution of long-term tillage experiment. Soil Sci Soc Am J 76:757–765. doi:10.2136/sssaj2011.0413

    Article  CAS  Google Scholar 

  • Pulido-Moncada M, Gabriels D, Cornelis W, Lobo D (2013) Comparing aggregate stability tests for soil physical quality indicators. Land Degrad Develop. doi:10.1002/ldr.2225

    Google Scholar 

  • Rasband W (2008) ImageJ 1.40. National Institute of Health, USA. http://imagej.nih.gov/ij/. Accessed 5 Oct 2015

  • SAS Institute Inc (1999–2001) SAS/TAT. Software V 8.2. Cary, NC

  • Schröder JJ, Jansen AG, Hilhorst GL (2005) Long-term nitrogen supply from cattle slurry. Soil Use Manag 21:196–204

    Article  Google Scholar 

  • Shukla MK, Lal R, Ebinger M (2006) Determining soil quality indicators by factor analysis. Soil Till Res 87:194–204. doi:10.1016/j.still.2005.03.011

    Article  Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys, 2nd edn. Agriculture Handbook no 436. United States Department of Agriculture. Natural Resources Conservation Service, U.S. Government Printing Office, Washington, DC

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. doi:10.1111/j.1365-2389.1982.tb01755.x

    Article  CAS  Google Scholar 

  • Toth JD, Dou Z, Ferguson JD, Galligan DT, Ramberg CF Jr (2006) Nitrogen- vs. phosphorus-based dairy manure applications to field crops: nitrate and phosphorus leaching and soil phosphorus accumulation. J Environ Qual 35:2302–2312. doi:10.2134/jeq2005.0479

    Article  PubMed  CAS  Google Scholar 

  • Tóth G, Stolbovoy V, Montanerella L (2007) Soil quality and sustainable evaluation. An integrated approach to support soil-related policies of the European Union. European Commission EUR 22721 EN. http://eusoils.jrc.ec.europa.eu/esdb_archive/eusoils_docs/other/EUR22721.pdf. Accessed 5 Oct 2015

  • Trolldenier G (1975) Influence de la fumure minérale sur l’équilibre biologique dans la rhizosphêre. Bulletin de la Société Botanique de France 122(2):157–167. doi:10.1080/00378941.1975.10839362

    Article  CAS  Google Scholar 

  • USEPA (1992) United States Environmental Protection Agency. Method 6010A. Inductively coupled plasma-atomic emission spectroscopy. Kovar, J.K. Chapter 6. Methods of determination of P, K, Ca, Mg and others trace elements. In: Peters J (ed) Recommended methods of manure analysis. Publ. A3769. Univ. of Wisconsin Extension, Madison, WI

  • Van Kessel JS, Reeves JB, Meisinger JJ (2000) Nitrogen and carbon mineralization of potential manure components. J Environ Qual 29:1669–1677. doi:10.2134/jeq2000.00472425002900050039x

    Article  Google Scholar 

  • Velthof GL, Bannink A, Oenema O, Van Der Meer HG, Spoelstra SF (2000) Relationships between animal nutrition and manure quality—a literature review on C, N, P and S compounds. Alterra-rapport 063, Alterra, Green World Research, Wageningen. http://edepot.wur.nl/28901. Accessed 5 Oct Sept 2015

  • Vogel HJ (2008) Quantim4 C/++ Library for scientific image processing. UFZ-Helmhotz Center for Environment Research, Helmholtz

    Google Scholar 

  • Wang X, Cammeraat ELH, Cerli C, Kalbitz K (2014) Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition. Soil Biol Biochem 72:55–65. doi:10.1016/j.soilbio.2014.01.018

    Article  CAS  Google Scholar 

  • Whalen JK, Chang C (2002) Macroaggregate characteristics in cultivated soils after 25 annual manure applications. Soil Sci Soc Am J 66:1637–1647

    Article  CAS  Google Scholar 

  • Yagüe MR, Bosch-Serra AD, Boixadera J (2012a) Measurement and estimation of the fertilizer value of pig slurry by physicochemical models: usefulness and contraints. Biosyst Eng 111:206–216. doi:10.1016/j.biosystemseng.2011.11.013

    Article  Google Scholar 

  • Yagüe MR, Bosch-Serra AD, Antunez M, Boixadera J (2012b) Pig slurry and mineral fertilization treatments’ effects on soil quality: macroaggregate stability and organic matter fractions. Sci Total Environ 438:218–224. doi:10.1016/j.scitotenv.2012.08.063

    Article  PubMed  Google Scholar 

  • Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476. doi:10.1080/00103628809368027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank IRTA Mas Badia staff, all along the period of the experiment for field assistance and Montse Antúnez and Belén Martínez for laboratory assistance. The initial field maintenance was done through a project from Interministerial Science and Technology Research commission (CICYT) of Spain (AGL2001-2214-C06). The subsequent field maintenance and measurements development were supported through the Plans for the improvement of crop fertilization, led by the Department of Agriculture, Livestock, Fisheries, Food and Natural Environment from Generalitat de Catalonia and through different projects from the National Institute for Agricultural and Food Scientific Research and Technology of Spain (INIA): RTA04-114-C3; RTA2010-00126-C02-02 and RTA2013-57-C5-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María R. Yagüe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Supplemental material 2 (DOC 50 kb)

10705_2015_9757_MOESM3_ESM.tif

Figure S1. Monthly precipitation (P), and mean air temperature (T) during the crop season samplings (2012-2013) and for the historical period (1993-2014) (TIFF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingo-Olivé, F., Bosch-Serra, À.D., Yagüe, M.R. et al. Long term application of dairy cattle manure and pig slurry to winter cereals improves soil quality. Nutr Cycl Agroecosyst 104, 39–51 (2016). https://doi.org/10.1007/s10705-015-9757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9757-7

Keywords

Navigation