Nutrient Cycling in Agroecosystems

, Volume 103, Issue 2, pp 201–215 | Cite as

Higher soil respiration under mowing than under grazing explained by biomass differences

  • Péter Koncz
  • János Balogh
  • Marianna Papp
  • Dóra Hidy
  • Krisztina Pintér
  • Szilvia Fóti
  • Katja Klumpp
  • Zoltán Nagy
Original Article

Abstract

Different management practices may change the rate of soil respiration, thus affecting the carbon balance of grasslands. Therefore, we investigated the effect of grazing and mowing on soil respiration along with its driving variables (soil water content, soil temperature, above and below ground biomass, vegetation indices and soil carbon) in adjacent treatments (grazed and mowed) at a semi-arid grassland in Hungary (2011–2013). The average soil respiration over three years was higher in the mown (6.03 ± 4.07 µmol CO2 m−2 s−1) than in the grazed treatment (5.29 ± 3.50 µmol CO2 m−2 s−1). While soil water content and soil temperature did not differ between treatments, mowing resulted in 20 % higher soil respiration than grazing, possibly due to 17 % higher average above ground biomass in the mowed than in the grazed treatment. Inclusions of vegetation index VIGreen in the soil respiration model in addition to abiotic drivers improved the explained Rs variance by 16 % in the mowed and by 5 % in the grazed site, respectively. VIGreen alone proved to be a simple and fast indicator of soil respiration (r2 = 0.31 at grazed, r2 = 0.44 at mowed site). We conclude that soil respiration is responsive to the combined effect soil water content, soil temperature, biomass and soil carbon content as affected by the management (grazing vs. mowing) practice.

Keywords

Grassland management Soil CO2 efflux Soil respiration models Vegetation indices 

References

  1. Atkin OK, Edwards EJ, Loveys BR (2000) Response of root respiration to changes in temperature and its relevance to global warming. New Phytol 147:141–154CrossRefGoogle Scholar
  2. Bahn M, Rodeghiero M, Anderson-Dunn M et al (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11:1352–1367. doi:10.1007/s10021-008-9198-0 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bahn M, Schmitt M, Siegwolf R et al (2009) Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460. doi:10.1111/j.1469-8137.2008.02755.x PubMedCentralCrossRefPubMedGoogle Scholar
  4. Balogh J, Pintér K, Fóti S et al (2011) Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol Biochem 43:1006–1013. doi:10.1016/j.soilbio.2011.01.017 CrossRefGoogle Scholar
  5. Barcsák Z, Baskay-Tóth B, and Prieger K (1978) Gyeptermesztés és hasznosítás [Grass production and utilization] Budapest, Mezőazdasági Kiadó. 339 ppGoogle Scholar
  6. Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582CrossRefPubMedGoogle Scholar
  7. Bremer DJ, Ham JM, Owensby CE, Knapp AK (1998) Responses of soil respiration to clipping and grazing in a tallgrass prairie. J Environ Qual 27:1539–1548CrossRefGoogle Scholar
  8. Burri S, Sturm P, Prechsl UE et al (2014) The impact of extreme summer drought on the short-term carbon coupling of photosynthesis to soil CO2 efflux in a temperate grassland. Biogeosciences 11:961–975. doi:10.5194/bg-11-961-2014 CrossRefGoogle Scholar
  9. Campbell GS (1986) Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agric For Meteorol 36:317–321. doi:10.1016/0168-1923(86)90010-9 CrossRefGoogle Scholar
  10. Campbell GS, Norman JM (1989) The description and measurement of plant canopy structure. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form, and function. Society for Experimental Biology 31. Cambridge University Press, Cambridge, pp 1–19CrossRefGoogle Scholar
  11. Chen Q, Wang Q, Han X et al (2010) Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Glob Biogeochem Cycles 24:1–11. doi:10.1029/2009GB003538 CrossRefGoogle Scholar
  12. Conant RT (2010) Challenges and opportunities for carbon sequestration in grassland systems: a technical report on grassland management and climate change mitigation. Integr Crop Manag 9:1–57Google Scholar
  13. Craine J, Wedin D, Chapin FS III (1999) Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant Soil 207:77–86. doi:10.1023/A:1004417419288 CrossRefGoogle Scholar
  14. Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob Change Biol 10:161–169. doi:10.1111/j.1529-8817.2003.00727.x CrossRefGoogle Scholar
  15. Davidson E, Janssens I (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. doi:10.1038/nature04514 CrossRefPubMedGoogle Scholar
  16. De Beurs KM, Henebry GM (2005) A statistical framework for the analysis of long image time series. Int J Remote Sens 26:1551–1573. doi:10.1080/01431160512331326657 CrossRefGoogle Scholar
  17. Fóti S, Balogh J, Nagy Z et al (2014) Soil moisture induced changes on fine-scale spatial pattern of soil respiration in a semi-arid sandy grassland. Geoderma 213:245–254. doi:10.1016/j.geoderma.2013.08.009 CrossRefGoogle Scholar
  18. Frank AB, Liebig MA, Tanaka DL (2006) Management effects on soil CO2 efflux in northern semiarid grassland and cropland. Soil Tillage Res 89:78–85. doi:10.1016/j.still.2005.06.009 CrossRefGoogle Scholar
  19. Geng Y, Wang Y, Yang K et al (2012) Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLoS ONE 7:e34968. doi:10.1371/journal.pone.0034968 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Gitelson A, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80:76–87CrossRefGoogle Scholar
  21. Gong J-R, Wang Y, Liu M et al (2014) Effects of land use on soil respiration in the temperate steppe of Inner Mongolia, China. Soil Tillage Res 144:20–31. doi:10.1016/j.still.2014.06.002 CrossRefGoogle Scholar
  22. Guanter L, Zhang Y, Jung M et al (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci USA 111:E1327–E1333. doi:10.1073/pnas.1320008111 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554. doi:10.1016/j.tree.2006.06.004 CrossRefPubMedGoogle Scholar
  24. Hou X, Wang Z, Michael SP et al (2014) The response of grassland productivity, soil carbon content and soil respiration rates to different grazing regimes in a desert steppe in northern China. Rangel J 36:573–582Google Scholar
  25. Huang N, Niu Z (2012) Estimating soil respiration using spectral vegetation indices and abiotic factors in irrigated and rainfed agroecosystems. Plant Soil. doi:10.1007/s11104-012-1488-9 Google Scholar
  26. Hungarian Standard (1987) Physical, biological and chemical analysis of peat and peat mixes. Determination of organic matter and organic carbon content, MSZ-08-0012-6:1987. Budapest, 4 pGoogle Scholar
  27. Hunt R (1990) Basic growth analysis. Unwin Hayman Ltd, LondonCrossRefGoogle Scholar
  28. IPCC (2006) Guidelines for national greenhouse gas inventories. Agriculture, forestry, and other land use, vol 4. Emissions from livestock and manure management, chap 10Google Scholar
  29. Jia X, Wei X (2012) Agricultural and forest meteorology responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China. Agric For Meteorol 166–167:32–40. doi:10.1016/j.agrformet.2012.05.022 CrossRefGoogle Scholar
  30. Koncz P, Besnyői V, Csathó AI, Nagy J, Szerdahelyi T, Zs Tóth, Pintér K, Balogh J, Nagy ZBS (2014) Effect of grazing and mowing on the microcoenological composition of semi-arid grassland in Hungary. Appl Ecol Environmnetal Res 12:563–575CrossRefGoogle Scholar
  31. Lal R (2008) Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutr Cycl Agroecosyst 81:113–127. doi:10.1007/s10705-007-9147-x CrossRefGoogle Scholar
  32. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323. doi:10.2307/2389824 CrossRefGoogle Scholar
  33. Lou Y, Zhou X (2006) Soil respiration and the environment. Elsevier, AmsterdamGoogle Scholar
  34. Luo Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712. doi:10.1146/annurev.ecolsys.38.091206.095808 CrossRefGoogle Scholar
  35. Molnár Z, Bartha S, Seregélyes T et al (2007) A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MÉTA). Folia Geobot 42:225–247CrossRefGoogle Scholar
  36. Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85. doi:10.1016/j.soilbio.2013.01.002 CrossRefGoogle Scholar
  37. Nagy Z, Pintér K, Czóbel S et al (2007) The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agric Ecosyst Environ 121:21–29. doi:10.1016/j.agee.2006.12.003 CrossRefGoogle Scholar
  38. Nagy Z, Pintér K, Pavelka M et al (2011) Carbon balance of surfaces vs. ecosystems: advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems. Biogeosci Discuss 8:941–973. doi:10.5194/bg-8-2523-2011 CrossRefGoogle Scholar
  39. Necpálová M, Li D, Lanigan G et al (2014) Changes in soil organic carbon in a clay loam soil following ploughing and reseeding of permanent grassland under temperate moist climatic conditions. Grass Forage Sci 69:611–624. doi:10.1111/gfs.12080 CrossRefGoogle Scholar
  40. Sakamoto T, Gitelson AA, Nguy-Robertson AL et al (2012) An alternative method using digital cameras for continuous monitoring of crop status. Agric For Meteorol 154–155:113–126. doi:10.1016/j.agrformet.2011.10.014 CrossRefGoogle Scholar
  41. Shahzad T, Chenu C, Repinçay C et al (2012) Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species. Soil Biol Biochem 51:73–80. doi:10.1016/j.soilbio.2012.04.014 CrossRefGoogle Scholar
  42. Shrestha BM, Sitaula BK, Singh BR, Bajracharya RM (2004) Fluxes of CO2 and CH4 in soil profiles of a mountainous watershed of Nepal as influenced by land use, temperature, moisture and substrate. Nutr Cycl Agroecosyst 68:155–164CrossRefGoogle Scholar
  43. Silleos NG, Alexandridis TK (1996) Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int 21:21–28CrossRefGoogle Scholar
  44. Singh JS, Lauenroth WK, Milchunas DG (1983) Geography of grassland ecosystems. Prog Phys Geogr 7:46–80. doi:10.1177/030913338300700102 CrossRefGoogle Scholar
  45. Smith P, Cai Z, Martino D et al (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 363:789–813. doi:10.1098/rstb.2007.2184 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Soussana J, Loiseau P, Vuichard N, et al (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. doi: 10.1079/SUM2003234 Google Scholar
  47. Soussana JF, Allard V, Pilegaard K et al (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121:121–134. doi:10.1016/j.agee.2006.12.022 CrossRefGoogle Scholar
  48. Stark S, Tuomi J, Strömmer R, Helle T (2003) Non-parallel changes in soil microbial carbon and nitrogen dynamics due to reindeer grazing in northern boreal forests. Ecography (Cop) 26:51–59. doi:10.1034/j.1600-0587.2003.03336.x CrossRefGoogle Scholar
  49. Stehfest E, Bouwman L, Vuuren DP et al (2009) Climate benefits of changing diet. Clim Change 95:83–102. doi:10.1007/s10584-008-9534-6 CrossRefGoogle Scholar
  50. Thorne M, Frank D (2008) The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses. Plant Ecol 200:205–215. doi:10.1007/s11258-008-9445-7 CrossRefGoogle Scholar
  51. Vinczeffy I (1993) Legelő és gyepgazdálkodás [Pasture and grassland management]. Mezőgazda Kiadó, BudapestGoogle Scholar
  52. Wan S, Luo Y (2003) Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochem CY 17:1–12. doi:10.1029/2002GB001971 CrossRefGoogle Scholar
  53. Wang WJ, Zu YG, Wang HM et al (2005) Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system. J For Res 10:57–60. doi:10.1007/s10310-004-0102-2 CrossRefGoogle Scholar
  54. Wang M, Liu X, Zhang J et al (2015) Soil respiration associated with plant succession at the meadow steppes in Songnen Plain, Northeast China. J Plant Ecol 8:51–60. doi:10.1093/jpe/rtu006 CrossRefGoogle Scholar
  55. Zhang G, Kang Y, Han G et al (2011) Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agric Scand Sect B-Soil Plant Sci 61:356–364. doi:10.1080/09064710.2010.495079 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Péter Koncz
    • 1
  • János Balogh
    • 2
  • Marianna Papp
    • 1
  • Dóra Hidy
    • 1
  • Krisztina Pintér
    • 2
  • Szilvia Fóti
    • 1
  • Katja Klumpp
    • 3
  • Zoltán Nagy
    • 1
    • 2
  1. 1.MTA-SZIE Plant Ecology Research GroupSzent István UniversityGödöllőHungary
  2. 2.Institute of Botany and EcophysiologySzent István UniversityGödöllőHungary
  3. 3.Grassland Ecosystem Research UnitInstitut National de la Recherche AgronomiqueClermont-FerrandFrance

Personalised recommendations