Nutrient Cycling in Agroecosystems

, Volume 100, Issue 2, pp 177–187

Nitrous oxide (N2O) emissions in response to increasing fertilizer addition in maize (Zea mays L.) agriculture in western Kenya

  • Jonathan E. Hickman
  • Cheryl A. Palm
  • Patrick Mutuo
  • Jerry M. Melillo
  • Jianwu Tang
Original Article

Abstract

National and regional efforts are underway to increase fertilizer use in sub-Saharan Africa, where attaining food security is a perennial challenge and mean fertilizer use in many countries is <10 % of nationally recommended rates. Increases in nitrogen (N) inputs will likely cause increased emissions of the greenhouse gas nitrous oxide (N2O). We established experimental plots with different rates of N applied to maize (Zea mays) in a field with a history of nutrient additions in western Kenya and measured N2O fluxes. Fertilizer was applied by hand at 0, 50, 75, 100, and 200 kg N ha−1 in a split application on March 22 and April 20, 2010. Gas sampling was conducted daily during the week following applications, and was otherwise collected weekly or biweekly until June 29, 2010. Cumulative fluxes were highest from the 200 kg N ha−1 treatment, with emissions of 810 g N2O–N ha−1; fluxes from other treatments ranged from 620 to 710 g N2O–N ha−1, but with no significant differences among treatments. Emissions of N2O during the 99-day measurement period represented <0.1 % of added fertilizer N for all treatments. Though limited to a single year, these results provide further evidence that African agricultural systems may have N2O emission factors substantially lower than the global mean.

Keywords

Nitrogen Africa Greenhouse gas Agricultural intensification Carbon dioxide Methane 

References

  1. Adviento-Borbe M, Haddix ML, Binder DL et al (2007) Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob Change Biol 13:1972–1988CrossRefGoogle Scholar
  2. AGRA (2009) Building on the new momentum in African Agriculture: AGRA in 2008. Alliance for a green revolution in Africa, NairobiGoogle Scholar
  3. Baggs E, Chebii J, Ndufa J (2006) A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya. Soil Tillage Res 90:69–76. doi:10.1016/j.still.2005.08.006 CrossRefGoogle Scholar
  4. Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46:53–70CrossRefGoogle Scholar
  5. Brümmer C, Brüggemann N, Butterbach-Bahl K et al (2008) Soil-atmosphere exchange of N2O and NO in near-natural savanna and agricultural land in Burkina Faso (W. Africa). Ecosystems 11:582–600. doi:10.1007/s10021-008-9144-1 CrossRefGoogle Scholar
  6. Chapuis-Lardy L, Metay A, Martinet M et al (2009) Nitrous oxide fluxes from Malagasy agricultural soils. Geoderma 148:421–427. doi:10.1016/j.geoderma.2008.11.015 CrossRefGoogle Scholar
  7. Chikowo R, Mapfumo P, Nyamugafata P, Giller K (2004) Mineral N dynamics, leaching and nitrous oxide losses under maize following two-year improved fallows on a sandy loam soil in Zimbabwe. Plant Soil 259:315–330CrossRefGoogle Scholar
  8. Cobo JG, Dercon G, Cadisch G (2010) Nutrient balances in African land use systems across different spatial scales: a review of approaches, challenges and progress. Agric Ecosyst Environ 136:1–15. doi:10.1016/j.agee.2009.11.006 CrossRefGoogle Scholar
  9. Crill PM, Keller M, Weitz A et al (2000) Intensive field measurements of nitrous oxide emissions from a tropical agricultural soil. Glob Biogeochem Cycles 14:85–95CrossRefGoogle Scholar
  10. Cuhel J, Simek M, Laughlin RJ et al (2010) Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol 76:1870–1878. doi:10.1128/AEM.02484-09 PubMedCrossRefPubMedCentralGoogle Scholar
  11. Davidson EA (1992) Pulses of nitric oxide and nitrous oxide flux following wetting of dry soil: an assessment of probable sources and importance relative to annual fluxes. Ecol Bull 42:149–155Google Scholar
  12. Davidson EA, de Abreu Sá TD, Carvalho CJR et al (2008) An integrated greenhouse gas assessment of an alternative to slash-and-burn agriculture in eastern Amazonia. Glob Change Biol 14:998–1007. doi:10.1111/j.1365-2486.2008.01542.x CrossRefGoogle Scholar
  13. De Groote H, Owuor G, Doss C et al (2005) The maize green revolution in Kenya revisited. J Agric Dev Econ 2:32–49Google Scholar
  14. Dick J, Kaya B, Soutoura M et al (2008) The contribution of agricultural practices to nitrous oxide emissions in semi-arid Mali. Soil Use Manag 24:292–301. doi:10.1111/j.1475-2743.2008.00163.x CrossRefGoogle Scholar
  15. FAO (2006) Fertilizer use by crop. Fertil Plant Nutr Bull 17:1–124Google Scholar
  16. Faurès J-M, Santini G (2008) Water and the rural poor: interventions for improving livelihoods in sub-Saharan Africa. International Fund for Agricultural Development (IFAD), RomeGoogle Scholar
  17. Firestone M, Davidson EA (1989) Microbial basis of NO and N2O production and consumption in soils. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 7–22Google Scholar
  18. Gentile R, Vanlauwe B, Chivenge P, Six J (2008) Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biol Biochem 40:2375–2384. doi:10.1016/j.soilbio.2008.05.018 CrossRefGoogle Scholar
  19. Hickman JE, Havlikova M, Kroeze C, Palm CA (2011) Current and future nitrous oxide emissions from African agriculture. Curr Opin Environ Sustain 5:370–378. doi:10.1016/j.cosust.2011.08.001 CrossRefGoogle Scholar
  20. Hoben JP, Gehl RJ, Millar N et al (2010) Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob Change Biol 17:1140–1152. doi:10.1111/j.1365-2486.2010.02349.x CrossRefGoogle Scholar
  21. Holland E, Boone R, Greenberg J et al (1999) Measurement of Soil CO2, N2O and CH4 exchange. In: Robertson GP, Bledsoe CS, Coleman DC PS (eds) Standard soil methods for long term ecological research. Oxford University Press, New York, pp 185–210Google Scholar
  22. Kimetu JM, Mugendi DN, Bationo A et al (2006) Partial balance of nitrogen in a maize cropping system in humic nitisol of Central Kenya. Nutr Cycl Agroecosyst 76:261–270. doi:10.1007/s10705-005-6082-6 CrossRefGoogle Scholar
  23. Le Roux X, Abbadie L, Lensi R, Serca D (1995) Emission of nitrogen monoxide from African tropical ecosystems: control of emission by soil characteristics in humid and dry savannas of West Africa. J Geophys Res 100:23133–23–23133–142Google Scholar
  24. Lompo DJ-P, Sangaré SAK, Compaoré E et al (2012) Gaseous emissions of nitrogen and carbon from urban vegetable gardens in Bobo-Dioulasso, Burkina Faso. J Plant Nutr Soil Sci 175:846–853. doi:10.1002/jpln.201200012 CrossRefGoogle Scholar
  25. Ma BL, Wu TY, Tremblay N et al (2010) Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer. Glob Change Biol 16:156–170CrossRefGoogle Scholar
  26. Mapanda F, Mupini J, Wuta M et al (2010) A cross-ecosystem assessment of the effects of land cover and land use on soil emission of selected greenhouse gases and related soil properties in Zimbabwe. Eur J Soil Sci 61:721–733. doi:10.1111/j.1365-2389.2010.01266.x CrossRefGoogle Scholar
  27. Mapanda F, Wuta M, Nyamangara J, Rees RM (2011) Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant Soil 343:67–81. doi:10.1007/s11104-011-0753-7 CrossRefGoogle Scholar
  28. Mapanda F, Wuta M, Nyamangara J et al (2012) Greenhouse gas emissions from Savanna (Miombo) woodlands: responses to clearing and cropping. Afr Crop Sci J 20:385–400Google Scholar
  29. McSwiney CP, Robertson GP (2005) Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob Change Biol 11:1712–1719. doi:10.1111/j.1365-2486.2005.01040.x CrossRefGoogle Scholar
  30. Millar N, Baggs EM (2005) Relationships between N2O emissions and water-soluble C and N contents of agroforestry residues after their addition to soil. Soil Biol Biochem 37:605–608. doi:10.1016/j.soilbio.2004.08.016 CrossRefGoogle Scholar
  31. Millar N, Ndufa JK, Cadisch G, Baggs EM (2004) Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Glob Biogeochem Cycles 18. doi: 10.1029/2003GB002114
  32. Mosier A, Kroeze C, Nevison C et al (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248CrossRefGoogle Scholar
  33. Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J Environ Qual 35:1584. doi:10.2134/jeq2005.0232 PubMedCrossRefGoogle Scholar
  34. Nziguheba G, Palm C, Berhe T et al (2010) The African Green Revolution: Results from the Millennium Villages Project. Advances in Agronomy 109:75–115Google Scholar
  35. Nziguheba G (2013) Partial nitrogen budgets in maize farming systems supplied with fertilizers int he context of the African Green Revolution. 6th international nitrogen conferenceGoogle Scholar
  36. Palm CA, Alegre JC, Arevalo L et al (2002) Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Glob Biogeochem Cycles 16. doi:10.1029/2001GB001855
  37. Peoples M, Herridge D, Ladha J (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? management of Biological nitrogen fixation for the development of more productive and sustainable agricultural systems 3–28Google Scholar
  38. Predotova M, Gebauer J, Diogo RVC et al (2010) Emissions of ammonia, nitrous oxide and carbon dioxide from urban gardens in Niamey, Niger. Field Crops Res 115:1–8. doi:10.1016/j.fcr.2009.09.010 CrossRefGoogle Scholar
  39. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous Oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. doi:10.1126/science.1176985 PubMedCrossRefGoogle Scholar
  40. Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125. doi:10.1146/annurev.environ.032108.105046 CrossRefGoogle Scholar
  41. Tittonell P, Vanlauwe B, de Ridder N, Giller KE (2007) Heterogeneity of crop productivity and resource use efficiency within smallholder Kenyan farms: soil fertility gradients or management intensity gradients? Agric Syst 94:376–390. doi:10.1016/j.agsy.2006.10.012 CrossRefGoogle Scholar
  42. Van Groenigen JW, Velthof GL, Oenema O et al (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61:903–913. doi:10.1111/j.1365-2389.2009.01217.x CrossRefGoogle Scholar
  43. Vanlauwe B, Giller K (2006) Popular myths around soil fertility management in sub-Saharan Africa. Agric Ecosyst Environ 116:34–46. doi:10.1016/j.agee.2006.03.016 CrossRefGoogle Scholar
  44. Vitousek PM, Naylor R, Crews T et al (2009) Nutrient Imbalances in Agricultural Development. Science 324:1519–1520. doi:10.1126/science.1170261 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jonathan E. Hickman
    • 1
  • Cheryl A. Palm
    • 1
  • Patrick Mutuo
    • 2
    • 3
  • Jerry M. Melillo
    • 4
  • Jianwu Tang
    • 4
  1. 1.Agriculture and Food Security CenterThe Earth Institute of Columbia UniversityPalisadesUSA
  2. 2.Millennium Village ProjectKisumuKenya
  3. 3.Conservation InternationalNairobiKenya
  4. 4.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA

Personalised recommendations