Direct and residual response of wheat to swine slurry application method

Abstract

Swine production represents more than 25% of net agricultural incomes in some Spanish regions. Most of the 25 million t of swine slurry produced yearly in Spain is applied to agricultural fields by surface broadcasting (splash-plate) with important atmospheric N losses that reduce the fertilizer value of the slurry. Surface banding, incorporation, and injection into the soil are recommended methods to reduce N losses. We examined during two consecutive years the response of a wheat crop to swine slurry (SS) applied in the first year at two rates (30 and 60 Mg ha−1) using two application methods: splash-plate (SP) and soil incorporation (SI). After SS application, the soil was sampled intensively to establish the actual amount of SS in the soil (N recovery) and its spatial variability (distribution uniformity) in the two methods. Wheat yield, above ground dry matter and N uptake were measured along the 2 years. Swine slurry distribution uniformity and soil N-recovery were higher in SI than in SP, but grain yield and N uptake were independent of the application method in the 2 years. Reliable management practices compatible with the protection of the environment require further studies on the pathways and the availability of N to crops subject to SS incorporation in the soil at the moment of application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ayers RA, Westcot DW (1994) Water quality for agriculture. FAO irrigation and drainage paper 29 rev. 1. ISBN 92-5-102263-1

  2. Berntsen J, Petersen N, Sørensen P, Olensen J (2007) Simulating residual effect of animal manures using 15 N isotopes. Plant Soil 290(1–2):173–187. doi:10.1007/s11104-006-9150-z

    Article  CAS  Google Scholar 

  3. Bhogal A, Hactch DJ, Shepherd MA, Jarvis SC (1999) Comparison of methodologies for field measurements of net nitrogen mineralisation in arable soils. Plant Soil 207:15–28. doi:10.1023/A:1004420602776

    Article  Google Scholar 

  4. Cerrato ME, Blackmer AM (1990) Comparison of models for describing corn yield response to nitrogen fertilizer. Agron J 82:138–143

    Google Scholar 

  5. Chambers B, Nicholson N, Smith K, Pain B, Cumby T, Scotford I (2001) Spreading systems for slurries and solid manures. Booklet 3. Managing Livestock manures. ADAS Gleadthorpe Research Centre Ministry of Agriculture, Fisheries and Food, p 7

  6. Chantigny MH, Rochette P, Angers DA, Masse D, Cote D (2004) Ammonia volatilization and selected soil characteristics following application of anaerobically digested pig slurry. Soil Sci Soc Am J 68:306–312

    CAS  Article  Google Scholar 

  7. Craswell ET, Godwin DG (1984) The efficiency of nitrogen fertilizers applied to cereals grown in different climates. In: Tinker PB, Lauchil A (eds) Adv Plant Nutr, vol 1, Praeger Publishers, USA, pp 1–56

  8. Cusick PR, Kelling KK, Powell KA, Muñoz GR (2006) Estimates of residual dairy manure nitrogen availability using various techniques. J Environ Qual 35:2170–2177. doi:10.2134/jeq2005.0287

    Article  CAS  PubMed  Google Scholar 

  9. Daudén A, Quílez D, Martínez C (2004) Residual effects of pig slurry applied to a Mediterranean soil on yield and N uptake of a subsequent wheat crop. Soil Use Manage 20(2):156–162. doi:10.1079/SUM2003230

    Article  Google Scholar 

  10. Dixon WJ (1985) BMDP statistical software. University of California Press, Berkeley

    Google Scholar 

  11. Dumas JBA (1831) Procédés de l’analyse organique. Ann Chimie Phys 247:198–213

    Google Scholar 

  12. Gobierno de Aragón (1997) DECRETO 200/1997, de 9 de diciembre por el que se aprueban las Directrices Parciales Sectoriales sobre Actividades e Instalaciones Ganaderas. BOA 147 22/12/1997

  13. Gordon R, Jaieson R, Rodd V, Patterson G, Harz T (2001) Effects of surface manure application timing on ammonia volatilization. Can J Soil Sci 81:525–533

    CAS  Google Scholar 

  14. Hoad SP, Russell GG, Kettlewell PS, Belshaw M (2004) Root system management in winter wheat: practices to increase water and nitrogen use. Project Report no 351. Home-Grown Cereals Authority (HGCA). http://www.jxb.oxfordjournals.org/cgi/ reprint/46/5/557.pdf. Cited Nov 2004

  15. Houba VJG, van der Lee JJ, Novozamsky J, Walinga I (1988) Soil and plant analysis. Part 5: soil analysis procedures. Wageningen Agricultural University, The Netherlands

    Google Scholar 

  16. Huijsman JFM (2003) Manure application and ammonia volatilization. Ph.D. Dissertation. Wageningen University

  17. Irañeta I, Armesto AP, Segura A, Lafarga A, Arregui L, Merina M, Baroya E, Quemada M (2002) Herramientas de ayuda a la decisión para el manejo correcto de los fertilizantes nitrogenados en cereales de invierno. Navarra Agraria 133:7–16

    Google Scholar 

  18. Jarvis SC, Pain BF (1990) Ammonia volatilization from agricultural land. Fertiliser Society. Proceeding no. 28. (Ed) Greenhill house Thorpe wood. Peterborough PE3 6GF

  19. Jensen LS, Pedersen IS, Hansen TB, Nielsen NE (2000) Turnover and fate of 15 N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat. Eur J Agron 12:23–35. doi:10.1016/S1161-0301(99)00040-4

    Article  CAS  Google Scholar 

  20. Lory JA, Ruselle MP, Peterson TA (1995) A comparison of two nitrogen credit methods: traditional versus difference. Agron J 87:648–651

    Google Scholar 

  21. Maynard DG, Kalka YP (1993) Nitrate and exchange ammonium nitrogen. In: Carter MR (ed) Sampling and method of analysis. Canadian society of soil science. Lewis Publishers. CCR Press Inc, Boca Raton, FL, pp 25–38

    Google Scholar 

  22. Merriam JL, Keller J (1978) Farm irrigation system evaluation: a guide for management, 3rd edn. State University, Logan

    Google Scholar 

  23. Misselbrook TH, Smith KA, Johnson RA, Pain BF (2002) Slurry application techniques to reduce ammonia emissions: results of some UK field-scale experiments. Biosystems Eng 81(3):313–321. doi:10.1006/bioe.2001.0017

    Article  Google Scholar 

  24. Mooleki SP, Schoenau JJ, Hultgreen G, Wen G, Charles JL (2002) Effect of rate, frecuence and method of liquid swine manure application on soil nitrogen availability, crop performance and N use efficiency in East-Central-Saskatchewan. Can J Soil Sci 82(4):457–467

    Google Scholar 

  25. Morvan T, Leterme P, Arsene GG, Mary B (1997) Nitrogen transformations after the spreading of pig slurry on bare soil and ryegrass using 15 N-labelled ammonium. Eur J Agron 7:181–188. doi:10.1016/S1161-0301(97)00044-0

    Article  Google Scholar 

  26. Myrold DD, Bottomley PJ (2008) Mineralization and immobilization of nitrogen in soils. In: Scheepers JS and Raun WR (eds) Nitrogen in agricultural soils (chap 5), Monograph no. 49. American Society of Agronomy, Madison, WI, pp 153–167

  27. Pahl O, Godwin RJ, Hann MJ, Waine TW (2001) Cost-effective pollution control by shallow injection of pig slurry into growing crops. J Agric Eng Res 80(4):381–390. doi:10.1006/jaer.2001.0763

    Article  Google Scholar 

  28. Petersen J (1996) Fertilization of spring barley by combination of pig slurry and mineral nitrogen fertilizer. J Agric Sci Camb 127:151–159. doi:10.1017/S0021859600077923

    Article  Google Scholar 

  29. Pratt PF, Broadbent FE, Martin JP (1973) Using organic wastes as nitrogen fertilizers. Calif Agric 27(6):10–13

    Google Scholar 

  30. Rochette P, Chantigny MH, Angers DA, Bertrand N, Côte D (2001) Ammonia volatilization and soil nitrogen dynamics following fall application of pig slurry on canola crop residues. Can J Soil Sci 81:515–523

    CAS  Google Scholar 

  31. Rodhe L (2004) Development and evaluation of shallow injection of slurry into Ley, vol 483. Ph.D. dissertation, Departament of Biometry and Engineering, Swedish University of Agricultural Sciences, Agraria, Uppsala

  32. Rodhe L, Rammer C (2002) Application of slurry to ley by spreading and injection methods. Biosystems Eng 83(1):107–118. doi:10.1006/bioe.2002.0097

    Article  Google Scholar 

  33. SAS Institute (1999) SAS/STAT user’s guide ver. 8.2. SAS Institute Inc., Cary, NC, USA

  34. Shröder JJ (2005) Manure as a suitable component of precise nitrogen. Proceedings of the International Fertiliser Society no. 574, pp 1–32

  35. Sieling K, Schöder H, Finck M, Hanus H (1998) Yield, N uptake and apparent N use efficiency of winter wheat and winter barley grown in different cropping system. J Agric Sci 131(4):375–387. doi:10.1017/S0021859698005838

    Article  Google Scholar 

  36. Smith KM, Jackson DR, Misselbrook TH, Pain BF, Johnson RA (2000) Reduction of ammonia emission by slurry techniques. J Agric Eng Res 77(3):277–287. doi:10.1006/jaer.2000.0604

    Article  Google Scholar 

  37. Soil Survey Staff (1999) Soil Taxonomy, a basic system of soil classification for making and interpreting soil surveys, 2nd edn. United States Department of Agriculture. Natural Resources Conservation Service. Agriculture Handbook No. 436. US Government Printing Office, Washington DC. ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/tax.pdf

  38. Sommer SG, Hutchings NJ (2001) Ammonia emission from field applied manure and its reduction. Eur J Agron 15(1):1–15. doi:10.1016/S1161-0301(01)00112-5

    Article  CAS  Google Scholar 

  39. Sørensen P (2004) Immobilization, reminaralization and residual effects in subsequent crops of dairy cattle slurry nitrogen compared to mineral fertilizer nitrogen. Plant Soil 267(1–2):285–296. doi:10.1007/s11104-005-0121-6

    Article  Google Scholar 

  40. Sørensen SG, Amato M (2002) Remineralization and residual effects of N application of pig slurry to soil. Eur J Agron 16:81–95. doi:10.1016/S1161-0301(01)00119-8

    Article  Google Scholar 

  41. Sørensen SG, Jensen ES (1995) Mineralization-immobilization and plant uptake of nitrogen as influenced by the spatial distribution of cattle slurry in soils of different texture. Plant Soil 173:283–291. doi:10.1007/BF00011466

    Article  Google Scholar 

  42. Thomsen IK, Djurhuus J, Christensen BT (2003) Long continued applications of N fertilizer to cereals on sandy loam: grain and straw response to residual N. Soil Use Manage 19(1):57–64. doi:10.1111/j.1475-2743.2003.tb00280.x

    Article  Google Scholar 

  43. Wen G, Schoenau JJ, Charles JL, Inanaga S (2003) Efficiency parameters of nitrogen hog and cattle manure in the second year following application. J Plant Nutr Soil Sci 166(4):490–498. doi:10.1002/jpln.200321135

    Article  CAS  Google Scholar 

  44. Zebarth BJ, Paul JW, Schmidt O, McDougall R (1996) Influence of the time and rate of liquid manure application on yield and nitrogen utilization of silage corn in South Coastal British Columbia. Can J Soil Sci 76:53–164

    Google Scholar 

  45. Ziegler D, Heduit M (1991) Engrais de ferme: valeur fertilisante, gestion, environnement. Institut Technique du Porc (ITP), Institut Technique de Céréales et des Fourrages (ITCF), France, Institut Technique de l’élevage bovin (ITEB), Paris, 35 pp

  46. Zuo Q, Jie J, Zhang R, Meng L (2004) A generalized function of wheat’s root length density distributions. Vadose Zone J 3:271–277. doi:10.2113/3.1.271

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Miguel Izquierdo and Jesús Gaudó for their invaluable field management assistance and to Ramón Aragüés and Daniel Isidoro for the revision of the manuscript. This study was funded by the Spanish Agri-food Research and Technological Institute (INIA), projects SC00-061 and RTA04-114.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Quílez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yagüe, M.R., Quílez, D. Direct and residual response of wheat to swine slurry application method. Nutr Cycl Agroecosyst 86, 161–174 (2010). https://doi.org/10.1007/s10705-009-9280-9

Download citation

Keywords

  • Distribution uniformity
  • Efficiency of application
  • N availability
  • Incorporation
  • Residual effect
  • Surface broadcasting
  • Swine slurry