Skip to main content
Log in

Phosphorus and nitrogen cycles in the vegetation of differently managed buffer zones

  • Research Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Vegetated buffer zones (BZs) between a cultivated field and a watercourse reduce erosion and load of particle-bound phosphorus (P), but decay of abundant vegetation increases the potential of BZs to act as a source of readily algal-available P. To quantify temporal variations in P and nitrogen (N) contents of the grassy vegetation of BZs on a clay soil (Vertic Cambisol) in south-western Finland, plant samples were collected six times between May 2005 and April 2006 from natural BZs, BZs grazed by cattle and BZs harvested by cutting and removal of the yield. The total dry weight biomass peaked in early August at 2,130–2,360 and 5,500–6,270 kg ha−1 for the grazed and the other BZs, respectively. In August, 3,840–4,830 kg ha−1 were removed from the harvested BZs while the entire biomass of the non-harvested BZs remained in the field. In October, total P and N contents varied from 2.4–10.2 to 19–72 kg ha−1, respectively, the lowest amounts being for the young harvested BZ and the highest for the non-harvested BZs. A considerable decrease of P and N contents occurred in the biomass up to 6.1 and almost 30 kg ha−1, respectively, after the first frosts. Harvesting of BZs is recommended to decrease the amount of P and N in the BZs and reduce the risk of P and N leaching outside the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bechmann ME, Kleinman PJA, Sharpley AN, Saporito LS (2005) Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils. J Environ Qual 34:2301–2309. doi:10.2134/jeq2004.0415

    Article  CAS  PubMed  Google Scholar 

  • De Baets S, Poesen J, Gyssels G, Knapen A (2006) Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology 76:54–67. doi:10.1016/j.geomorph.2005.10.002

    Article  Google Scholar 

  • Dillaha TA, Reneau RB, Mostaghimi S, Lee D (1989) Vegetative filter strips for agricultural nonpoint source pollution control. T ASAE 32:513–519

    Google Scholar 

  • Dorioz JM, Wang D, Poulenard J, Trévisan D (2006) The effect of grass buffer strips on phosphorus dynamics—a critical review and synthesis as a basis for application in agricultural landscapes in France. Agric Ecosyst Environ 117:4–21. doi:10.1016/j.agee.2006.03.029

    Article  CAS  Google Scholar 

  • Drebs A, Nordlund A, Karlsson P, Helminen J, Rissanen P (2002) Climatological statistics of Finland 1971–2000. Finn Meteorol Inst 2002:1. Helsinki

  • FAO (2006) World reference base for soil resources 2006. World soil resources reports 103. Rome, Italy, p 128

  • Finnish Meteorological Institute (2008a) The onset and the end of the thermal growing season in 2005. http://www.fmi.fi/saa/tilastot_122.html. Cited 25 Feb 2008

  • Finnish Meteorological Institute (2008b) Climatological services. Email message. Received 27 Feb 2008

  • Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 29:189–217. doi:10.1191/0309133305pp443ra

    Article  Google Scholar 

  • Jackson RB, Schenk HJ, Jobbágy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT (2000) Belowground consequences of vegetation change and their treatment in models. Ecol Appl 10:470–483. doi:10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77. doi:10.1023/A:1010760720215

    Article  Google Scholar 

  • Jones JB Jr (2001) Laboratory guide for conducting soil test and plant analysis. CRC Press, USA

    Google Scholar 

  • Kelly JM, Kovar JL, Sokolowsky R, Moorman TB (2007) Phosphorus uptake during four years by different vegetative cover types in a riparian buffer. Nutr Cycl Agroecosyst 78:239–251. doi:10.1007/s10705-007-9088-4

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450. doi:10.2307/2404783

    Article  Google Scholar 

  • Koopmans GF, Chardon WJ, Ehlert PAI, Dolfing J, Suurs RAA, Oenema O, van Riemsdijk WH (2004) Phosphorus availability for plant uptake in a phosphorus-enriched noncalcareous sandy soil. J Environ Qual 33:965–975

    Article  CAS  PubMed  Google Scholar 

  • Magette WL, Brinsfield RB, Palmer RE, Wood JD (1989) Nutrient and sediment removal by vegetated filter strips. T ASAE 32:663–667

    Google Scholar 

  • Mamo M, Bubenzer GD (2001a) Detachment rate, soil erodibility, and soil strength as influenced by living plant roots. Part I: laboratory study. T ASAE 44:1167–1174

    Google Scholar 

  • Mamo M, Bubenzer GD (2001b) Detachment rate, soil erodibility, and soil strength as influenced by living plant roots. Part II: field study. T ASAE 44:1175–1181

    Google Scholar 

  • Mander Ü, Kuusemets V, Ivask M (1995) Nutrient dynamics of riparian ecotones: a case study from the Porijŏgi River catchment, Estonia. Landsc Urban Plan 31:333–348. doi:10.1016/0169-2046(94)01061-C

    Article  Google Scholar 

  • Mander Ü, Kuusemets V, Lŏhmus K, Mauring T (1997) Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecol Eng 8:299–324. doi:10.1016/S0925-8574(97)00025-6

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Pietola L, Alakukku L (2005) Root growth dynamics and biomass input by Nordic annual field crops. Agric Ecosyst Environ 108:135–144. doi:10.1016/j.agee.2005.01.009

    Article  Google Scholar 

  • Pietola L, Horn R, Yli-Halla M (2005) Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil Tillage Res 82:99–108. doi:10.1016/j.still.2004.08.004

    Article  Google Scholar 

  • Reddy KR, Diaz OA, Scinto LJ, Agami M (1995) Phosphorus dynamics in selected wetlands and streams of the Lake Okeechobee Basin. Ecol Eng 5:183–207. doi:10.1016/0925-8574(95)00024-0

    Article  Google Scholar 

  • Richardson CJ (1985) Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427. doi:10.1126/science.228.4706.1424

    Article  PubMed  CAS  Google Scholar 

  • Roberson T, Bundy LG, Andraski TW (2007) Freezing and drying effects on potential plant contributions to phosphorus in runoff. J Environ Qual 36:532–539. doi:10.2134/jeq2006.0169

    Article  CAS  PubMed  Google Scholar 

  • Smucker AJM, McBurney SL, Srivastava AK (1982) Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system. Agron J 74:500–503

    Google Scholar 

  • Søvik AK, Syversen N (2008) Retention of particles and nutrients in the root zone of a vegetative buffer zone–effect of vegetation and season. Boreal Env Res 13:223–230

    Google Scholar 

  • Syversen N (2002) Effect of a cold-climate buffer zone on minimising diffuse pollution from agriculture. Water Sci Technol 45:69–76

    CAS  PubMed  Google Scholar 

  • Timmons DR, Holt RF, Latterell JJ (1970) Leaching of crop residues as a source of nutrients in surface runoff water. Water Resour Res 6:1367–1375. doi:10.1029/WR006i005p01367

    Article  CAS  Google Scholar 

  • Uusi-Kämppä J (2005) Phosphorus purification in buffer zones in cold climates. Ecol Eng 24:491–502. doi:10.1016/j.ecoleng.2005.01.013

    Article  Google Scholar 

  • Uusi-Kämppä J, Kilpinen M (2000) Suojakaistat ravinnekuormituksen vähentäjänä. Maatalouden tutkimuskeskuksen julkaisuja, Maatalouden tutkimuskeskus, Jokioinen, Sarja A 83, 49 pp +2 appendixes. (in Finnish)

  • Uusi-Kämppä J, Yläranta T (1992) Reduction of sediment phosphorus and nitrogen transport on vegetated buffer strips. Agri Sci Finl 1:569–575

    Google Scholar 

  • Uusi-Kämppä J, Braskerud B, Jansson H, Syversen N, Uusitalo R (2000) Buffer zones and constructed wetlands as filters for agricultural phosphorus. J Environ Qual 29:151–158

    Google Scholar 

  • Van der Salm C, Chardon WJ, Koopmans GF (2007) Mining soil phosphorus by zero P application: an effective method to reduce the risk of P loading to surface waters. In: Hecrath G, Rubæk GH, Kronvang B (eds) Diffuse phosphorus loss. Risk assessment, mitigation options and ecological effects in river basins. The 5th International Phosphorus Workshop (IPW5), Silkeborg, Denmark, 3–7 September 2007, DJF Plant Science No 130, pp 119–121

  • Vuorinen J, Mäkitie O (1955) The method of soil testing in use in Finland. Agrogeol Publ 63:1–44

    Google Scholar 

Download references

Acknowledgments

The funding for this study was provided by the Finnish Ministry of Agriculture and Forestry, the Maj and Tor Nessling Foundation and Maa- ja vesitekniikan tuki ry. The authors thank Mrs Olga Nikolenko, Mr Ari Seppänen and Mr Risto Tanni for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Räty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Räty, M., Uusi-Kämppä, J., Yli-Halla, M. et al. Phosphorus and nitrogen cycles in the vegetation of differently managed buffer zones. Nutr Cycl Agroecosyst 86, 121–132 (2010). https://doi.org/10.1007/s10705-009-9277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-009-9277-4

Keywords

Navigation