Skip to main content

Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems

Abstract

Nitrogen (N) and carbon (C) cycles are closely linked in organic farming systems. Use of residues for biogas digestion may reduce N-losses and lead to higher farmland productivity. However, digestion is connected to large losses of organic C. It is the purpose of this paper (1) to compare farming systems based on liquid slurry and solid farmyard manure regarding the N, C and organic dry matter (ODM) inputs and flows, (2) to analyse the effect of digestion on soil N, C and ODM inputs and flows within the cropping system, (3) to assess the effects of organic manure management on biological N2 fixation (BNF), and (4) to assess the effect of biogas digestion on the sustainability of the cropping systems in terms of N and C budgets. The BNF by clover/grass-leys was the most important single N input, followed by the BNF supplied by legume cover cropping. Growth of crops in organic farming systems is very often N limited, and not limited by the soil C inputs. However, balances of N inputs showed that the implemented organic farming systems have the potential to supply high amounts of N to meet crop N demand. The level of plant available N to non-legume main crops was much lower, in comparison to the total N inputs. Reasons were the non-synchronized timing of N mineralization and crop N demand, the high unproductive gaseous N losses and an unfocussed allocation in space and time of the circulating N within the crop rotation (e.g. allocation of immobile manures to legumes or of mobile manures to cover crops). Simultaneously, organic cropping systems very often showed large C surpluses, which may be potentially increased the N shortage due to the immobilization of N. Soil organic matter supply and soil humus balance (a balance sheet calculated from factors describing the cultivation effects on humus increasing and humus depleting crops, and organic manure application) were higher in cropping systems based on liquid slurry than in those based on solid farmyard manure (+19%). Simultaneously, soil N surplus was higher due to lower gaseous N losses (+14%). Biogas digestion of slurry had only a very slight effect on both the soil N and the soil C budget. The effect on the N budget was also slight if the liquid slurry was stored in closed repositories. Digestion of residues like slurry, crop residues and cover crops reduced in a mixed farming system the soil C supply unilaterally (approximately −33%), and increased the amounts of readily available N (approximately +70–75%). The long-term challenge for organic farming systems is to find instruments that reduce N losses to a minimum, to keep the most limiting fraction of N (ammonia-N) within the system, and to enhance the direct manuring effect of the available manures to non-legume main crops.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

BNF:

Biological N2-fixation

C:

Carbon

DS:

Liquid digested slurry

DS + FER:

Digestion of slurry, crop residues and purchased substrates

DS + FR:

Digestion of slurry and crop residues

FYM:

Solid farmyard manure

MV:

Mean value

N:

Nitrogen

Ndfa :

Nitrogen derived from atmosphere

NUE:

N use efficiency

ODM:

Organic dry matter

SOM:

Soil organic matter

US:

Liquid undigested slurry

wL:

Usual stockless management without livestock

wL-FR:

Stockless management with digestion of field residues

wL-FER:

Stockless management with digestion of field residues and purchased substrates

References

  • Aarts HFM, Habekotté B, van Keulen H (2000) Nitrogen management in the ‘De Marke’ dairy farming system. Nutr Cycl Agroecosyst 56:231–240

    Article  Google Scholar 

  • Agrarpolitischer Bericht der Bundesregierung (2004) Available at: http://www.bmelv.de/cln_045/nn_752130/DE/13-Service/Publikationen/Agrarbericht/__Agrarbericht__node.html

  • Agrarpolitischer Bericht der Bundesregierung (2005) Available at: http://www.bmelv.de/cln_045/nn_752130/DE/13-Service/Publikationen/Agrarbericht/__Agrarbericht__node.html

  • Agrarpolitischer Bericht der Bundesregierung (2006) Available at: http://www.bmelv.de/cln_045/nn_752130/DE/13-Service/Publikationen/Agrarbericht/__Agrarbericht__node.html

  • Amberger A (1989) Use of organic wastes as fertilizers and its environmental implications. In: Proceedings of the 1st symposium “Fertilization and the Environment”, Leuven/Belgium, pp 314–329, 27–30 August 1989

  • Amon T, Döhler H (2004) Qualität und Verwendung des Gärrestes. In: Fachagentur Nachwachsende Rohstoffe e.V. (ed) Handreichung—Biogasgewinnung und–nutzung, KTBL, Darmstadt; ISBN 3-00-014333-5, pp 153–165

  • Armstrong EL, Heenan DP, Pate JS, Unkovich MJ (1997) Nitrogen benefits of lupins, field pea, and chickpea to wheat production in south-eastern Australia. Aust J Agric Res 48:39–47

    Article  Google Scholar 

  • Asmus F (1992) Einfluss organischer Dünger auf Ertrag, Humusgehalt des Bodens und Humusreproduktion. Berichte über Landwirtschaft 206:127–139

    Google Scholar 

  • Asmus F, Linke B, Dunkel H (1988) Eigenschaften und Düngerwirkung von ausgefaulter Gülle aus der Biogasgewinnung. Arch Acker- u Pflanzenbau u Bodenkd 32:527–532

    Google Scholar 

  • Bachinger J (1995) Effects of organic and mineral fertilizer on chemical and microbiological parameters of C- and N-dynamics and root parameters. In: Mäder P, Raupp J (eds) Effects of low and high external input agriculture on soil microbial biomass and activities in view of sustainable agriculture. Research Institute of Organic Agriculture (FiBL), Oberwil and Institute for Biodynamic Research, Darmstadt, pp 52–58

    Google Scholar 

  • Badaruddin M, Meyer DW (1994) Grain legume effects on soil nitrogen, grain yield, and nitrogen nutrition of wheat. Crop Sci 34:1304–1309

    Article  Google Scholar 

  • Baeckström GL, Hanell U, Svensson G (2006) Nitrogen use efficiency in an 11-year study of conventional and organic wheat cultivation. Commun Soil Sci Plant Anal 37:417–449

    Article  CAS  Google Scholar 

  • Båth B, Malgeryd J, Stintzing AR, Åkerhielm H (2006) Surface mulching with red clover in white cabbage production nitrogen uptake, ammonia losses and the residual fertility effect in ryegrass. Biol Agric Hortic 23:287–304

    Google Scholar 

  • Beck DP, Wery J, Saxena MC, Ayadi A (1991) Dinitrogen fixation and nitrogen balance in cool-season food legumes. Agron J 83:334–341

    CAS  Google Scholar 

  • Beckie HJ, Brandt SA, Schoenau JJ, Campbell CA, Henry JL, Janzen HH (1997) Nitrogen contribution of field pea in annual cropping systems. 2. Total nitrogen benefit. Can J Plant Sci 77:323–331

    Google Scholar 

  • Berry PM, Sylvester-Bradley R, Phillips L, Hatch DJ, Cuttle SP, Rayns FW, Gosling P (2002) Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag 18:248–255

    Article  Google Scholar 

  • Bijay-Singh Ryden JC, Whitehead JC (1988) Some relationships between denitrification potential and fractions of organic carbon in air-dried and field-moist soils. Soil Biol Biochem 20:737–741

    Article  Google Scholar 

  • Boekel P (1986) Het effect van organische stof op te bodemstructuur. In: PAGV Lelystad (ed) Themendag “Organische stof in de akkerbouw”, Themaboekje 7. PAGV, Lelystad, The Netherlands, pp 44–53

  • Bussink DW, Oenema O (1998) Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr Cycl Agroecosyst 19:33–51

    Google Scholar 

  • Campbell CA, Bowren KE, Schnitzer M, Zentner RP, Townley-Smith L (1991a) Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick black chernozem. Can J Soil Sci 71:377–387

    CAS  Google Scholar 

  • Campbell CA, Lafond GP, Zentner RP, Biederbeck VO (1991b) Influence of fertilizer and straw baling on soil organic matter in a thin black chernozem in western Canada. Soil Biol Biochem 23:443–446

    Article  CAS  Google Scholar 

  • Cavigelli MA, Teasdale JR, Conklin AE (2008) Long-term agronomic performance of organic and conventional field crops in the mid-Atlantic region. Agron J 100:785–794

    Article  CAS  Google Scholar 

  • Chang C, Janzen HH, Cho CM, Nakonechny EM (1998) Nitrous oxide emission through plants. Soil Sci Soc Am J 62:35–38

    CAS  Google Scholar 

  • Collins HP, Delgado JA, Alva AK, Follett RF (2007) Use of nitrogen-15 isotopic techniques to estimate nitrogen cycling from a mustard cover crop to potatoes. Agron J 99:27–35

    CAS  Google Scholar 

  • Darwish OH, Persaud N, Martens DC (1995) Effect of long-term application of animal manure on physical properties of three soils. Plant Soil 176:289–295

    Article  CAS  Google Scholar 

  • Diez Th (1995) Definition und Beurteilung Ökologischer Leistungen im abiotischen Ressourcenschutz Bereich Boden. Dachverband Agrarforschung (ed) Schriftenreihe agrarspectrum 24, 25–32

  • Diez Th, Beck T, Borchert H, Capriel P, Krauss M, Bauchhenß J (1991) Vergleichende Bodenuntersuchungen von konventionell und alternativ bewirtschafteten Betriebsschlägen - 2. Mitteilung. Bayer Landw Jahrb 68:409–444

    Google Scholar 

  • Dosch P, Gutser R (1996) Reducing N losses (NH3, N2O, N2) and immobilization from slurry through optimized application techniques. Fertilizer Res 43:165–171. doi:10.1007/BF00747697

    Article  Google Scholar 

  • DüngeVO (Düngeverordnung) (2006) Verordnung über die Grundsätze der guten fachlichen Praxis beim Düngen vom 10.01.2006, BGBl I, 20 pp

  • Drury CF, Oloya TO, McKenney DJ, Gregorich EG, Tan CS, van Luyk CL (1998) Long-term effects of fertilization and rotation on denitrification and soil carbon. Soil Sci Soc Am J 62:1572–1579

    CAS  Google Scholar 

  • Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180

    Article  CAS  Google Scholar 

  • Fließbach A, Mäder P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventionall agricultural systems. Soil Biol Biochem 32:757–768

    Article  Google Scholar 

  • Garcia-Ruiz R, Baggs EM (2007) N2O emission from soil following combined application of fertiliser-N and ground weed residues. Plant Soil 299:263–274

    Article  CAS  Google Scholar 

  • Granstedt A (2000) Increasing the efficiency of plant nutrient recycling within the agricultural system as a way of reducing the load to the load to the environment—experience from Sweden and Finland. Agric Ecosyst Environ 80:169–185

    Article  Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385

    CAS  Google Scholar 

  • Gutser R, Th Ebertseder, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446

    Article  CAS  Google Scholar 

  • Haas G, Deittert C, Köpke U (2007) Farm-gate nutrient balance assessment of organic dairy farms at different intensity levels in Germany. Renew Agri Food Syst 22:223–232

    Article  Google Scholar 

  • Halberg N, Kristensen ES, Kristensen IS (1995) Nitrogen turnover on organic and conventional mixed farms. J Agric Environ Ethics 8:30–51

    Article  Google Scholar 

  • Heilmann H (1992) Offene Fragen zur Biogastechnologie. Ökologie und Landbau 83:25–26

    Google Scholar 

  • Hossain SA, Dalal RC, Waring SA, Strong WM, Weston EJ (1996) Comparison of legume-based cropping systems at Warra, Queensland. I. Soil nitrogen and organic carbon accretion and potentially mineralisable nitrogen. Aust J Soil Res 34:273–287

    Article  CAS  Google Scholar 

  • Jensen ES (1987) Seasonal patterns of growth and nitrogen fixation in field-grown pea. Plant Soil 101:29–37

    Article  Google Scholar 

  • Jensen LS, Mueller T, Bruun S, Hansen S (2001) Application of the Daisy model for short and long-term simulation of soil carbon and nitrogen dynamics. In: Shaeffer M, Hansen S (eds) Modelling carbon and nitrogen dynamics for soil management. CRC Press, Boca Raton, pp 483–506

    Google Scholar 

  • Jost B, Schmidtke K, Rauber R (2007) Kalkulation der N2-Fixierleistung und der N-Flächenbilanz beim Anbau von Leguminosen im ökologischen Landbau.In: Proceedings 9 Wissenschaftstagung Ökologischer Landbau, Universität Hohenheim, Stuttgart, 20–23.03.2007. Available at http://orgprints.org/9620/

  • Kirchmann H (1985) Losses, plant uptake and utilisation of manure nitrogen during a production cycle. Acta Agric Scand, Supplement 24, 77 pp

  • Kirchmann H, Bernal MP (1997) Organic waste treatment and C stabilization efficiency. Soil Biol Biochem 29:1747–1753

    Article  CAS  Google Scholar 

  • Kirchmann H, Ryan MH (2004) Nutrients in organic farming—are there advantages from the exclusive use of organic manures and untreated minerals? In: Fischer T, Turner N, Angus J, McIntyeare L, Robertson M, Borrell A, Lloyd D (eds) New directions for a diverse planet. Proceedings of the 4th international crop science congress, 26 Sep–1 Oct 2004, Brisbane. Available at: http://www.cropscience.org.au/icsc2004/pdf/828_kirchmannh.pdf

  • Kolbe H (2005) Verification of the VDLUFA humus balance method using long-term field trials. Arch Agron Soil Sci 51:221–239

    Article  Google Scholar 

  • Körschens M, Weigel A, Schulz E (1998) Turnover of soil organic matter (SOM) and long-term balances—tools for evaluating sustainable productivity of soils. J Plant Nutr Soil Sci 161:409–424

    Google Scholar 

  • Körschens M, Rogasik J, Schulz E (2004) Humusbilanzierung: Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten. Available at: http://www.vdlufa.de/joomla/Dokumente/Standpunkte/08-humusbilanzierung.pdf, accessed November 11, 2006

  • Kyvsgaard P, Sørensen P, Møller E, Magid J (2000) Nitrogen mineralization from sheep faeces can be predicted from the apparent digestibility of the feed. Nutr Cycl Agroecosyst 57:207–214

    Article  Google Scholar 

  • Lambert R, Toussaint B, Peeters A (2004) Estimating nitrogen losses from animal manures using their phosphorus balance. In: Hatch DJ, Chadwick DR, Jarvis SC, Roker JA (eds) Controlling nitrogen flows and losses. Wageningen Academic Publishers, Wageningen, pp 518–519

    Google Scholar 

  • Lampkin N (1990) Organic farming. Farming Press Books, Ipswich

    Google Scholar 

  • Ledgard SF, Penno JW, Sprosen MS (1999) Nitrogen inputs and losses from clover/grass pastures grazed by dairy cows, as affected by nitrogen fertilizer application. J Agric Sci Camb 132:215–225

    Article  Google Scholar 

  • Leithold G, Brock Chr (2006) Humusbilanzierung im ökologischen Landbau. Available at: http://geb.uni-giessen.de/geb/volltexte/2006/3134/. Accessed November 11, 2007

  • Leithold G, Hülsbergen KJ (1998) Humusbilanzierung im ökologischen Landbau. Ökologie und Landbau 105:32–35

    Google Scholar 

  • Loveland P, Webb J (2003) Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil & Tillage Res 70:1–18

    Article  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    PubMed  Article  Google Scholar 

  • Malgeryd J, Karlsson S, Rodhe L, Salomon E (2002) Lönsam stallgödselhantering - teknik, växtnäringshushållning, kvalitet och ekonomi. Teknik för lantbruket 99, JTI – Institutet för jordbruks- och miljöteknik, Uppsala. (In Swedish)

  • Merz HU (1988) Untersuchungen zur Wirkung von unbehandelter und methanvergorener Rindergülle auf den N-Umsatz unter Dactylis glomerata L. sowie auf das Keimverhalten verschiedener Pflanzenarten. Ph.D thesis Fakultät III, Agrarwissenschaften I der Universität Hohenheim

  • Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 30:1–16

    Article  CAS  Google Scholar 

  • Möller K, Stinner W, Leithold G. (2006a) Biogas im ökologisch wirtschaftenden Pflanzenbau mit Viehhaltung. In: Möller K, Leithold G, Michel J, Schnell S, Stinner W, Weiske A (eds) Auswirkung der Fermentation biogener Rückstände in Biogasanlagen auf Flächenproduktivität und Umweltverträglichkeit im Ökologischen Landbau—Pflanzenbauliche, ökonomische und ökologische Gesamtbewertung im Rahmen typischer Fruchtfolgen viehhaltender und viehloser ökologisch wirtschaftender Betriebe. Final report (in German). Available at: http://orgprints.org/10970/, pp 35–120

  • Möller K, Habermeyer J, Zinkernagel V, Reents HJ (2006b) The impact and the interaction of nitrogen and Phytophthora infestans as yield-limiting and yield-reducing factors in organic potato (Solanum tuberosum L.) Crops. Potato Res 49:281–301

    Article  Google Scholar 

  • Möller K, Stinner W, Deuker A, Leithold G (2008a) Effects of biogas digestion of slurry, cover crops and crop residues on nitrogen cycles and crop growth of a mixed organic farming system. Nutr Cycl Agroecosyst 82:209–232

    Article  Google Scholar 

  • Möller K, Stinner W, Leithold G (2008b) Growth, composition, biological N2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk. Nutr Cycl Agroecosyst 82:233–249

    Article  CAS  Google Scholar 

  • Neeteson JJ, Schröder JJ, Jakobsson C (2004) Drivers towards sustainability: why change? In: Hatch DJ, Chadwick DR, Jarvis SC, und Roker JA (eds) Controlling nitrogen flows and losses. Wageningen Academic Publishers, Wageningen, The Netherlands, pp 29–38

    Google Scholar 

  • Pang XP, Letey J (2000) Organic farming: challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci Soc Am J 64:247–253

    CAS  Google Scholar 

  • Parton WJ, Rasmussen PE (1994) Long-term effects of crop management in wheat fallow. 2. CENTURY model simulations. Soil Sci Soc Am J 58:530–536

    Google Scholar 

  • Paustian K, Parton WJ, Persson J (1992) Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots. Soil Sci Soc Am J 56:476–488

    Google Scholar 

  • Paustian K, Collins HP, Paul EA (1997) Management controls on soil carbon. In: Paul EA, Elliot ET, Paustian K, Cole CV (eds) Soil organic matter in temperate agroecosystems. Long-term experiments in North America. CRC Press, Boca Raton, pp 15–49

    Google Scholar 

  • Petersen SO, Lind A-M, Sommer SG (1998) Nitrogen and organic matter losses during storage of cattle and pig manure. J Agri Sci Cam 69:79–130

    Google Scholar 

  • Rauhe K (1987) Effects of organic manuring and cropping on soil humus and fertility. In: Welte E, Szabolccs I (eds) Proceedings of the 4th international CIEC symposium agricultural waste management and environmental protection′, Braunschweig, Germany, pp 55–76, 11–14 May 1987

  • Rauhe K, Hesse M (1960) Über die Wirkung verschieden gelagerten Stalldiingers auf leichten und schweren Böden. Zeitschrift für Acker-und Pflanzenbau 110:135–152

    CAS  Google Scholar 

  • Reijnders L (2008) Ethanol production from crop residues and soil organic carbon. Resour Conserv Recy 52:653–658

    Article  Google Scholar 

  • Reinhold G, Klimanek EM, Breitschuh G (1991) Zum Einfluss der Biogaserzeugung auf Veränderungen in der Kohlenstoffdynamik von Gülle. Arch Acker- u Pflanzenbau u Bodenkd 35:129–137

    CAS  Google Scholar 

  • Reiter K, Schmidtke K, Rauber R (2002) The influence of long-term tillage systems on symbiotic N2 fixation of pea (Pisum sativum L.) and red clover (Trifolium pratense L.). Plant Soil 238:41–55

    Article  CAS  Google Scholar 

  • Richards JE, Soper RJ (1979) Effect of N fertilizer on yield, protein content, and symbiotic N fixation in fababeans. Agron J 71:807–811

    CAS  Google Scholar 

  • Richter J, Roelcke M (2000) The N-cycle as determined by intensive agriculture—examples from central Europe and China. Nutr Cycl Agroecosyst 57:33–46

    Article  Google Scholar 

  • Rusch HP (1980) Bodenfruchtbarkeit: Eine Studie biologischen Denkens. Haug-Verlag, Heidelberg

    Google Scholar 

  • Schaumann W (1998) Biogasgülle im ökologisch wirtschaftenden Betrieb? Ökologie und Landbau 26:11–16

    Google Scholar 

  • Scheller E (2006) Thesen zu den Auswirkungen des Biogasgärsubstrats auf den Boden. KTBL-Fachgespräch “Biogas im ökologischen Landbau” am 4–5 April 2006 in Braunschweig

  • Schmidtke K (1997) Schätzverfahren zur Ermittlung der N Flächenbilanz bei Leguminosen. VDLUFA-Schriftenreihe 46. Kongressband 1997, pp 659–662

  • Schmidtke K (1999) N-Flächenbilanz beim Anbau von Futter- und Körnerleguminosen. In: Hoffmann H, Müller S (eds) Beiträge zur 5.Wissenschaftstagung zum Ökologischen Landbau ‘Vom Rand zur Mitte’, Berlin, 23–25 February 1999, pp 234–238

  • Schwenke GD, Peoples MB, Turner GL, Herridge DF (1998) Does nitrogen fixation of commercial, dryland chickpea and faba bean crops in north-west New South Wales maintain or enhance soil nitrogen? Aust J Exp Agric 38:61–70

    Article  Google Scholar 

  • Stein-Bachinger K, Bachinger J, Schmitt L (2004) Nährstoffmanagement im Ökologischen Landbau. Ein Handbuch für Beratung und Praxis. KTBL (ed), Darmstadt. Landwirtschaftsverlag Münster

  • Steinshamn H, Thuen E, Azzaroli Bleken M, Brenøe UKT, Ekerholt G, Yri C (2004) Utilization of nitrogen (N) and phosphorus (P) in an organic dairy farming system in Norway. Agric Ecosyst Environ 104:509–522

    Article  CAS  Google Scholar 

  • Stinner W, Möller K, Leithold G (2008) Effects of biogas digestion of clover/grass-leys, cover crops and crop residues on nitrogen cycles and crop growth in a stockless farming system. Eur J Agron 29:125–134

    Article  CAS  Google Scholar 

  • Stockdale EA, Lampkin N, Hovi M, Keatinge R, Lennartsson EKM, MacDonald DW, Padel S, Tatersall F, Wolfe MS, Watson CA (2000) Agronomic and environmental implications of organic farming systems. Adv Agron 70:261–327

    Article  Google Scholar 

  • Stockdale EA, Shepherd MA, Fortune S, Cuttle SP (2002) Soil fertility in organic farming systems—fundamentally different? Soil Use Manag 18:301–308

    Article  Google Scholar 

  • Stumpe H, Garz J, Hagedorn E (1983) Einfluss unterschiedlicher Humusgehalte des Bodens auf die Erträge der Kulturpflanzen auf einer Sandlehm-Braunschwarzerde. Arch Acker-u Pflanzenbau u Bodenkd Berlin 27:169–175

    Google Scholar 

  • Svensson K, Odlare M, Pell M (2004) The fertilizing effect of compost and biogas residues from source separated household waste. J Agric Sci Camb 142:461–467

    Article  CAS  Google Scholar 

  • Thorup-Kristensen K, Magid J, Stoumann Jensen L (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302

    Article  Google Scholar 

  • Vogt G (1999) Entstehung und Entwicklung des ökologischen Landbaus im deutschsprachigen Raum. Giessen, Univ., PhD thesis

  • Vuorinen AH, Saharinen MH (1997) Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agric Ecosyst Environ 66:19–29

    Article  Google Scholar 

  • Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW (2002) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247

    Article  Google Scholar 

  • White PF, Nersoyan NK, Christiansen S (1994) Nitrogen cycling in a semi-arid Mediterranean region: changes in soil N and organic matter under several crop/livestock production systems. Aust J Agric Res 45:1293–1307

    Article  Google Scholar 

  • Wilts AR, Reicosky DC, Allmaras RR, Clapp CE (2004) Long-term corn residue effects: harvest alternatives, soil carbon turnover, and root-derived carbon. Soil Sci Soc Am J 68:1342–1351

    Google Scholar 

  • Wivstad M, Dahlin AS, Grant C (2005) Perspectives on nutrient management in arable farming systems. Soil Use Manag 21:113–121

    Google Scholar 

Download references

Acknowledgments

The author wish to thank Christopher Brock, Konstantin Becker, Joachim Clemens, Hans-Jürgen Reents, Reiner Ruser, Harald Schmidt, Knut Schmidtke, Walter Stinner, Manfred Trimborn and Sebastian Wulf for many helpful discussions and the supplied advice. I would like to thank also the unknown reviewers of the manuscripts of the entire biogas series for the many very helpful suggestions, which substantially improved the manuscripts. This research was supported by the “Deutsche Bundesstiftung Umwelt”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Möller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Möller, K. Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems. Nutr Cycl Agroecosyst 84, 179–202 (2009). https://doi.org/10.1007/s10705-008-9236-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-008-9236-5

Keywords

  • Biogas digestion
  • N budget
  • Organic farming
  • Soil organic matter supply