Skip to main content
Log in

Nutrient loss pathways from grazed grasslands and the effects of decreasing inputs: experimental results for three soil types

  • Research Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Agriculture is a main contributor of diffuse emissions of N and P to the environment. For N the main loss pathways are NH3-volatilization, leaching to ground and surface water and N2(O) emissions. Currently, imposing restraints on farm inputs are used as policy tool to decrease N and P leaching to ground water and to surface water, and the same measure is suggested to combat emissions of N2O. The response, however, to these measures largely depends on the soil type. In this study nutrient flows of three dairy farms in The Netherlands with comparable intensity on sand, peat and clay soils were monitored for at least 2 years. The first aim was to provide quantitative data on current nutrient loss pathways. The second aim was to explore the responses in partitioning of the nutrient loss pathways when farm inputs were altered. Mean denitrification rates ranged from 103 kg N ha−1 year−1 for the sandy soil to 170 kg N ha−1 year−1 for the peat soil and leaching to surface water was about 73 kg N ha−1 year−1 for the sandy soil, 15 kg N ha−1 year−1 for the clay soil and 38 kg N ha−1 year−1 for the peat soil. For P, leaching to surface water ranged from 2 kg P ha−1 year−1 for the sandy site to 5 kg P ha−1 year−1 for the peat site. The sandy soil was most responsive to changes in N surpluses on leaching to surface water, followed by the peat soil and least responsive was the clay soil. For P, a similar sequence was found. This article demonstrates that similar reductions of N and P inputs result in different responses in N and P loss pathways for different soil types. These differences should be taken into account when evaluating measures to improve environmental performance of (dairy) farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barraclough D, Jarvis S, Davies G, Williams J (1992) The relation between fertilizer nitrogen applications and nitrate leaching from grazed grassland. Soil Use Manag 8:51–55. doi:10.1111/j.1475-2743.1992.tb00894.x

    Article  Google Scholar 

  • Barton L, McLay CDA, Schipper LA, Smith CT (1999) Annual denitrification rates in agricultural and forest soils: a review. Aust J Soil Res 37:1073–1093. doi:10.1071/SR99009

    Article  Google Scholar 

  • Bijay-Singh RJC, Ryden JC, Whitehead DC (1989) Denitrification potential and actual rates of denitrification in soils under long-term grassland and arable cropping. Soil Biol Biochem 21(7):897–901. doi:10.1016/0038-0717(89)90078-3

    Article  Google Scholar 

  • Bučienè A, Švedas A, Antanaitis S (2003) Balances of the major nutrients N, P and K at the farm and field level and some possibilities to improve comparisons between actual and estimated crop yields. Eur J Agron 20:53–62. doi:10.1016/S1161-0301(03)00073-X

    Article  Google Scholar 

  • Bussink DW (1994) Relationships between ammonia volatilization and nitrogen fertilizer application rate, intake and excretion of herbage nitrogen by cattle on grazed swards. Nutr Cycl Agroecosyst 38(2):111–121

    Google Scholar 

  • Chardon WJ, Aalderink GH, Van der Salm C (2007) Phosphorus leaching from cow manure patches on soil columns. J Environ Qual 36:17–22. doi:10.2134/jeq2006.0182

    Article  PubMed  CAS  Google Scholar 

  • De Vries W, Kros H, Oenema O (2001) Modeled impacts of farming practices and structural agricultural changes on nitrogen fluxes in the Netherlands. Scientific World J 1(Suppl 2):664–672

    Google Scholar 

  • Fried M, Tanji K, Van de Pol R (1976) Simplified long term concept for evaluating leaching of nitrogen from agricultural land. J Environ Qual 5:197–200

    Google Scholar 

  • Heinen M (2006) Application of a widely used denitrification model to Dutch data sets. Geoderma 133:464–473. doi:10.1016/j.geoderma.2005.08.011

    Article  CAS  Google Scholar 

  • Hénault C, Germon JC (2000) NEMIS, a predictive model of denitrification on the field scale. Eur J Soil Sci 51:257–270. doi:10.1046/j.1365-2389.2000.00314.x

    Article  Google Scholar 

  • Hendriks RFA (1993) Nutriëntenbelasting van het oppervlaktewater in veenweide-gebieden (Nutrient loading of surface water in peat land areas). DLO Staring report 251, 164 pp (In Dutch)

  • Jarvis S (1992) Grazed grassland management and nitrogen losses: an overview. Aspects of applied biology. In: Archer JR et al (eds) Nitrate and farming systems. Association of Applied Biologists, Wellesbourne, pp 207–214

  • Koopmans GF, Chardon WJ, Ehlert PAI, Dolfing J, Suurs RAA, Oenema O et al (2004) Phosphorus availability for plant uptake in a phosphorus-enriched noncalcareous sandy soil. J Environ Qual 33:965–975

    PubMed  CAS  Google Scholar 

  • Koops JG, Oenema O, Van Beusichem ML (1996) Denitrification in the top and sub soil of grassland on peat soils. Plant Soil 154:1–10. doi:10.1007/BF00029269

    Article  Google Scholar 

  • LNV (2006) Ministry of agriculture and food quality. Manure Policy 2006: tables for calculating manure production. www.minlnv.nl

  • Lockyer DR, Whitehead DC (1990) Volatilization of ammonia from cattle urine applied to grassland. Soil Biol Biochem 22:1137–1142. doi:10.1016/0038-0717(90)90040-7

    Article  CAS  Google Scholar 

  • Menon RG, Hammon LL, Sissingh HA (1989) Determination of plant-available phosphorus by iron hydroxide-impregnated filter paper (Pi) soil test. Soil Sci Soc Am J 53:110–115

    CAS  Google Scholar 

  • Misselbrook TH, Van der Weerden TJ, Pain BF, Jarvis SC, Chambers BJ, Smith KA et al (2000) Ammonia emission factors for UK agriculture. Atmos Environ 34:871–880. doi:10.1016/S1352-2310(99)00350-7

    Article  CAS  Google Scholar 

  • Mosier AR, Klemedtsson L (1994) Measuring denitrification in the field. In: Weaver RW et al (eds) Methods of soil analysis. SSSA, Madison, pp 1047–1065

    Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development) (2001) Environmental indicators for agriculture. Volume 3 methods and results. Paris, France

  • Oenema O, Velthof GL, Kuikman PJ (2001) Technical and policy aspects of strategies to decrease greenhouse gas emission from agriculture. Nutr Cycl Agroecosyst 60:301–315. doi:10.1023/A:1012601113751

    Article  Google Scholar 

  • Oenema O, van Liere L, Schoumans OF (2005) Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in The Netherlands. J Hydrol (Amst) 304:289–301. doi:10.1016/j.jhydrol.2004.07.044

    Article  CAS  Google Scholar 

  • Olsthoorn C, Fong N (1998) The antropogenic nitrogen cycle in The Netherlands. Nutr Cycl Agroecosyst 52:269–276. doi:10.1023/A:1009724024770

    Article  Google Scholar 

  • RIVM (2002) MINAS en Milieu (MINAS and the environment) RIVM report 718201005. 205 pp

  • Schoumans OF, Groenendijk P (2000) Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands. J Environ Qual 29:111–116

    Article  CAS  Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraction mit Ammoniumoxalat-Lösung. Z Pflanzenernähr Düng Bodenk 105:194–202

    Article  CAS  Google Scholar 

  • Slak M, Commagnac L, Lucas S (1998) Feasibility of national nitrogen balances. Environ Pollut 102(S1):235–240. doi:10.1016/S0269-7491(98)80038-9

    Article  CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, d’Antonio C, Dobson A, Howarth R et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. doi:10.1126/science.1057544

    Article  PubMed  CAS  Google Scholar 

  • Torenbeek R, Voskamp T (2003) Nieuwe inzichten over uit-en afspoeling van meststoffen New insights in leaching of nutrients. H2O 18:19–21 (In Dutch)

    Google Scholar 

  • Van Beek CL, Eertwegh van den GAPH, Van Schaik FH, Van den Toorn A (2003a) Surface runoff from intensively managed grassland on peat soils; a diffuse source of nitrogen and phosphorus in surface waters. In: Walther W, Worch E, Wohnlich S (eds) Conference proceedings of diffuse input of chemicals into soil and groundwater. Dresden, Germany, 26–28 February, pp 9–17

  • Van Beek CL, Brouwer L, Oenema O (2003b) The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr Cycl Agroecosyst 67:233–244. doi:10.1023/B:FRES.0000003619.50198.55

    Article  Google Scholar 

  • Van Beek CL, Van den Eertwegh GAPH, Van Schaik FH, Velthof GL, Oenema O (2004) The contribution of dairy farming on peat soil on N and P loading of surface water. Nutr Cycl Agroecosyst 70:85–95. doi:10.1023/B:FRES.0000045984.93498.c3

    Article  Google Scholar 

  • Van der Salm C, Dolfing D, Van Groenigen JW, Heinen M, Koopmans G, Oenema J, Pleijter M, Van den Toorn A (2006) Diffuse belasting van het oppervlaktewater met nutriënten vanuit grasland op een zware kleigrond (Diffuse loading of surface water with nutrients from grassland on heavy clay). Alterra report 1266 (In Dutch)

  • Van der Salm C, Dolfing J, Heinen M, Velthof GL (2007) Estimation of nitrogen losses via denitrification from a heavy clay soil under grass. Agric Ecosyst Environ 119:311–319. doi:10.1016/j.agee.2006.07.018

    Article  CAS  Google Scholar 

  • Van der Salm C, Chardon WJ, Koopmans GL, Van Middelkoop JC, Ehlert PAI (2008) Phytoextraction of phosphorus-enriched grassland soil. J Environ Qual (submitted)

  • Van der Zee SEATM, Van Riemsdijk WH (1988) Model for long-term phosphate reaction kinetics in soil. J Environ Qual 17:35–41

    Google Scholar 

  • Watson CJ, Foy RH (2001) Environmental impacts of nitrogen and phosphorus cycling in grassland systems. Outlook Agric 30(2):117–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. van Beek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beek, C.L., van der Salm, C., Plette, A.C.C. et al. Nutrient loss pathways from grazed grasslands and the effects of decreasing inputs: experimental results for three soil types. Nutr Cycl Agroecosyst 83, 99–110 (2009). https://doi.org/10.1007/s10705-008-9205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-008-9205-z

Keywords

Navigation