Skip to main content
Log in

Comparison of methods for the estimation of inert carbon suitable for initialisation of the CANDY model

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Almost all soil organic carbon turnover models rely on a partitioning of total organic carbon into an inert and a decomposable pool. The quantification of these pools has a large impact on modelling results. In this study several methods to estimate inert carbon in soils, based either on total soil organic matter or physical protection, were assessed with the objectives of (1) minimising errors in carbon and nitrogen dynamics and (2) ensuring usability for sites with marked differences in site conditions. CANDY simulations were carried out by varying solely the method for calculating the size of the inert carbon pool used to initialise the model. Experimental data from Bad Lauchstädt and Müncheberg were used for the simulation. The data were made available for modellers at a workshop held at Müncheberg (Germany) in 2004. The results concerning not only carbon but also nitrogen dynamics were analysed by applying selected statistical methods. It was shown that even in short-term simulations model initialisation procedure may influence the simulation results considerably. Three methods of estimating inert carbon were identified as being the most appropriate. These methods are either based on soil texture or pore-space classes and therefore account for the physical protection of soil organic matter. Thus, physical protection seems to be of major importance. By extending the scope of the investigation into nitrogen dynamics, additional support for the applicability of a selected method was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addiscott T.M., Whitmore A.P. (1987). Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J. Agric. Sci. Cambridge 109:141–157

    Article  Google Scholar 

  • Boguslawski von E., Debruck J. (1976). Ergebnisse aus einem langjährigen Stallmist-Schafpferchversuch in Rauisch-Holzhausen. Z. Acker-u. Pflanzenbau 143:223–242

    Google Scholar 

  • Bruun S., Jensen L.S. (2002). Initialisation of soil organic matter pools of the Daisy model. Ecol. Model. 153:291–295

    Article  Google Scholar 

  • Coleman K. and Jenkinson D.S. 1996. Roth C-26.3-A model for the turnover od carbon in soil. In: Powlson D.S., Smith P. and Smith J.U. (eds), Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets, Vol. 38. NATO ASI series, Series I, Springer-Verlag, Heidelberg, pp. 237–246

  • Droeven G., Rixhon L., Crohain A. and Raimond Y. (1982). Long term effects of different systems of organic matter supply on the humus content and on the structural stability of soils regard to the crop yields in loamy soils. Soil degradation. In:Balkema A.A. (ed.), Proc Land Use Sem Soil Degradation, PUDOC, Wageningen, pp. 203–222

  • Falloon P., Smith P. (2000). Modelling refractory soil organic matter. Biol. Fertil. Soils. 30:388–398

    Article  Google Scholar 

  • Falloon P., Smith P., Coleman K., Marshall S. (1998). Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biol. Biochem. 30:1207–1211

    Article  CAS  Google Scholar 

  • Falloon P., Smith P., Coleman K., Marshall S. (2000). How important is inert organic matter for predictive soil carbon modelling using the Rothamsted carbon model? Soil Biol. Biochem. 32:433–436

    Article  CAS  Google Scholar 

  • FAO (1994). FAO-UNESO soil map of the world. Revised legend. FAO, Rome

    Google Scholar 

  • Fox D.G. (1981). Judging air quality model performance: a summary of the AMS Workshop on dispersion model performance. Bull. Am. Meteorol. Soc. 62:599–609

    Article  Google Scholar 

  • Franko U. 1996. Modelling approaches of soil organic matter within the CANDY system. In: Powlson D.S., Smith P. and Smith J.U. (eds), Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets, Vol. 38, NATO ASI Series, Series I, Springer, Berlin Heidelberg New York, pp. 247–254

  • Franko U. (1997). Modellierung des Umsatzes der organischen Bodensubstanz. Arch. Acker-Pfl. Boden 41:527–547

    CAS  Google Scholar 

  • Franko U., Oelschlägel B., Schenk S. (1995). Simulation of temperature-, water- and nitrogen dynamics using the model CANDY. Ecol. Model. 81:213–222

    Article  CAS  Google Scholar 

  • Franko U., Crocker G.J., Grace P.R., Klír J., Körschens M., Poulton P.R., Richter D.D. (1997). Simulating trends in soil organic carbon in long-term experiments using the CANDY model. Geoderma 81:109–120

    Article  Google Scholar 

  • Franko U., Puhlmann M., Kuka K., Böhme F. and Merbach I. 2006. Dynamics of water, carbon and nitrogen in an agricultural used Chernozem soil in Central Germany. In: Kersebaum K.C., Hecker J.-M. and Mirschel W. (eds), Modelling Water and Nutrient Dynamics in Soil Crop Systems. Springer, Stuttgart (in press)

  • Hansen S., Jensen H.E., Nielsen N.E., Svendsen H. (1991). Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fert. Res. 27:245–259

    Article  CAS  Google Scholar 

  • Kersebaum K.C. (2006). Water and nutrient dynamics in soil-crop systems with HERMES. In: Kersebaum K.C., Hecker J.-M. and Mirschel W. (eds), Modelling Water and Nutrient Dynamics in Soil Crop Systems. Springer, Stuttgart (in press)

  • Klir J. 2005. Personal communication

  • Körschens M. (1980). Beziehungen zwischen Feinanteil, Ct- und Nt-Gehalt des Bodens. Arch. Acker-Pfl. Boden 24:585–592

    Google Scholar 

  • Körschens M., Weigel A., Schulz E. (1998). Turnover of soil organic matter (SOM) and long-term balances – tools for evaluating sustainable productivity of soils. Z. Pflanzenernähr. Bodenk. 161:409–424

    Google Scholar 

  • Kubat J., Klir J., Pova D. (2003). The dry matter yields, nitrogen uptake and the efficacy of nitrogen fertilisation in long-term field experiments in Prague. Plant Soil Environ. 49:337–345

    Google Scholar 

  • Kuka K., Franko U., Rühlmann J., Martens R., Vogt M. and Kalbitz K. 2006. Modelling the impact of pore space distribution on carbon turnover. Ecol. Model. (submitted)

  • Loague K., Green R.E. (1991). Statistical and graphical methods for evaluating solute transport models: overview and application. J. Contam. Hydrol. 7:51–73

    Article  CAS  Google Scholar 

  • Ludwig B., John B., Ellerbrock R., Kaiser M., Flessa H. (2003). Stabilization of carbon from maize in sandy soil in a long-term experiment. Eur. J. Soil Sci. 54:117–126

    Article  CAS  Google Scholar 

  • Mirschel W., Wenkel K.-O., Wegehenkel M., Kersebaum K.C., Schindler U. and Hecker J.-M. (2006). Müncheberg field trial data set for agro-ecosystem model validation. In: Kersebaum K.C., Hecker J.-M. and Mirschel W. (eds), Modelling Water and Nutrient Dynamics in Soil Crop Systems. Springer, Stuttgart (in press)

  • Parton W.J. (1996). The CENTURY model. In: Powlson D.S., Smith P. and Smith J.U. (eds), Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets, Vol. 38, NATO ASI Series, Series I, Springer, Berlin Heidelberg New York, pp. 283–293

  • Rühlmann J. (1999). A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiments. Plant Soil 213:149–160

    Article  Google Scholar 

  • Schulz E. (1997). Charakterisierung der organischen Bodensubstanz (OBS) nach dem Grad ihrer Umsetzbarkeit und ihre Bedeutung für Transformationsprozesse für Nähr- und Schadstoffe. Arch. Acker-Pfl. Boden 41:465–483

    CAS  Google Scholar 

  • Schmidt M.W.I., Skjemstad J.O., Gehrt E., Kögel-Knabner I. (1999). Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 50:351–365

    Article  Google Scholar 

  • Smith J.U., Smith P. and Addiscott T. 1996. Quantitative methods to evaluate and compare soil organic matter (SOM) models. In: Powlson D.S., Smith P. and Smith J.U. (eds), Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets, Vol. 38, NATO ASI Series, Series I, Springer, Berlin Heidelberg New York, pp. 181–199

  • Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H., Klein-Gunnewiek H., Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thonley J.H.M. and Whitmore A.P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81: 153–225

    Google Scholar 

  • Willmott C.J., Wicks D.E. (1980). An empirical method for the spatial interpolation of monthly precipitation within California. Phys. Geogr. 1:59–73

    Google Scholar 

Download references

Acknowledgements

We thank Drs. W. Mirschel and K.C. Kersebaum for providing additional CORG data of the Müncheberg site, Mr. A.D. Liston for improving the English and two anonymous reviewers for helpful comments on an earlier draft of this manuscript. We are also grateful to the organisers of the workshop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Puhlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puhlmann, M., Kuka, K. & Franko, U. Comparison of methods for the estimation of inert carbon suitable for initialisation of the CANDY model. Nutr Cycl Agroecosyst 74, 295–304 (2006). https://doi.org/10.1007/s10705-006-9005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-006-9005-2

Key words

Navigation