Skip to main content
Log in

Measurement of Net Global Warming Potential in Three Agroecosystems

Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Cite this article

Abstract

When appraising the impact of food and fiber production systems on the composition of the Earth's atmosphere and the ‘greenhouse’ effect, the entire suite of biogenic greenhouse gases – carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) – needs to be considered. Storage of atmospheric CO2 into stable organic carbon pools in the soil can sequester CO2 while common crop production practices can produce CO2, generate N2O, and decrease the soil sink for atmospheric CH4. The overall balance between the net exchange of these gases constitutes the net global warming potential (GWP) of a crop production system. Trace gas flux and soil organic carbon (SOC) storage data from long-term studies, a rainfed site in Michigan that contrasts conventional tillage (CT) and no-till (NT) cropping, a rainfed site in northeastern Colorado that compares cropping systems in NT, and an irrigated site in Colorado that compares tillage and crop rotations, are used to estimate net GWP from crop production systems. Nitrous oxide emissions comprised 40–44% of the GWP from both rain-fed sites and contributed 16–33% of GWP in the irrigated system. The energy used for irrigation was the dominant GWP source in the irrigated system. Whether a system is a sink or source of CO2, i.e. net GWP, was controlled by the rate of SOC storage in all sites. SOC accumulation in the surface 7.5 cm of both rainfed continuous cropping systems was approximately 1100 kg CO2 equivalents ha−1 y−1. Carbon accrual rates were about three times higher in the irrigated system. The rainfed systems had been in NT for >10 years while the irrigated system had been converted to NT 3 years before the start of this study. It remains to be seen if the C accrual rates decline with time in the irrigated system or if N2O emission rates decline or increase with time after conversion to NT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • K.F. Bronson A.R. Mosier (1993) Nitrous oxide emissions and methane consumption in wheat and corn-cropped systems in Northeastern Colorado L.A. Harper A.R. Mosier J.M. Duxbury D.E. Rolston (Eds) Agricultural Ecosystem Effects on Trace Gases and Global Climate Change Am. Soc. Agron Madison, WI 133–144

    Google Scholar 

  • K. Caldeira G. Morgan D. Baldocchi P. Brewer C.T.A. Chen G.-J. Nabuurs N. Nakicenovic G.P. Robertson (2004) A portfolio of carbon management options C.B. Field (Eds) Towards CO2 Stabilization Island Press New York

    Google Scholar 

  • Council for Agricultural Science and Technology (CAST) 2004. Climate Change and Greenhouse Gas Mitigation: Challenges and Opportunities for AgricultureTask Force Report No. 141. CAST, Ames, IAUSA720 pp.

  • C.V. Cole J. Duxbury J. Freney O. Heinemeyer K. Minami A. Mosier K. Paustian N Rosenberg N. Sampson D. Sauerbeck Q. Zhao (1997) ArticleTitleGlobal estimates of potential mitigation of greenhouse gas emissions by agriculture Nutr. Cycl. Agroecosyst. 49 221–228 Occurrence Handle10.1023/A:1009731711346

    Article  Google Scholar 

  • S.J. Del Grosso D.S. Ojima W.J. Parton A.R. Mosier (2002) Simulated effects of tillage and timing of N fertilizer application on net greenhouse gas fluxes and N losses from agricultural soils in the Midwestern USA J. Ham ParticleVan A.P.M. Baede R. Guicherit G.F.M. Williams-Jacobse (Eds) Non-CO2 Greenhouse Gases; Proceedings NCGG-3 Millpress Rotterdamthe Netherlands 23–29

    Google Scholar 

  • R.F. Follett (2001) ArticleTitleSoil management concepts and carbon sequestration in cropland soils Soil Till. Res. 61 77–92 Occurrence Handle10.1016/S0167-1987(01)00180-5

    Article  Google Scholar 

  • A.D. Halvorson A.R. Mosier C.A. Reule (2004) Nitrogen and crop management influence irrigated corn yields and greenhouse gas emissions Alan Schlegel (Eds) Proc. 2004 Great Plains Soil Fertility Conf. EditionNumberVol. 10 DenverCO. Kansas State Univ. Manhattan, KS 21–27

    Google Scholar 

  • G.L. Hutchinson A.R. Mosier (1981) ArticleTitleImproved soil cover method for field measurement of nitrous oxide fluxes Soil Sci. Soc. Am. J. 45 311–316

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) 2001. Technical Summary of the 3rd Assessment Report of Working Group 1. D.L. Albritton and L.G. Meira Filho (Co-ordinating lead authors). 63 pp.

  • C. Kroeze A.R. Mosier L. Bouwman (1999) ArticleTitleClosing the global N2O budget: a retrospective analysis 1500–1994 Global Biogeochem. Cycles 13 1–8 Occurrence Handle10.1029/1998GB900020

    Article  Google Scholar 

  • G.P. Livingston G.L. Hutchinson (1995) Enclosurebased measurement of trace gas exchange: applications and sources of error P.A. Matson R.C. Harriss (Eds) Biogenic Trace Gases: Measuring Emissions from Soil and Water Blackwell Science London 14–51

    Google Scholar 

  • A.R. Mosier L. Mack (1980) ArticleTitleGas chromatographic system for preciserapid analysis of N2O Soil Sci. Soc. Am. J. 44 1121–1123

    Google Scholar 

  • A.R. Mosier D.S. Schimel D.W. Valentine K.F. Bronson W.J. Parton (1991) ArticleTitleMethane and nitrous oxide fluxes in nativefertilized and cultivated grasslands Nature 350 330–332 Occurrence Handle10.1038/350330a0

    Article  Google Scholar 

  • A.R. Mosier W.J. Parton D.W. Valentine D.S. Ojima D.S. Schimel J.A. Delgado (1996) ArticleTitleCH4N2O fluxes in the Colorado shortgrass steppe: I. Impact of landscape and nitrogen addition Global Biogeochem. Cycles 10 387–399 Occurrence Handle10.1029/96GB01454

    Article  Google Scholar 

  • A.R. Mosier W.J. Parton D.W. Valentine D.S. Ojima D.S. Schimel O. Heinemeyer (1997) ArticleTitleCH4N2O fluxes in the Colorado shortgrass steppe. 2. Long-term impact of land use change Global Biogeochem. Cycles 11 29–42 Occurrence Handle10.1029/96GB03612

    Article  Google Scholar 

  • G.A. Peterson D.G. Westfal C.V. Cole (1993) ArticleTitleAgroecosystem approach to soil and crop management research Soil Sci. Soc. Am. J. 57 1354–1360

    Google Scholar 

  • G.P. Robertson (2004) Abatement of nitrous oxidemethaneand the other non-CO2 greenhouse gases C.B. Field (Eds) Towards CO2 Stabilization Island Press Washington, DC

    Google Scholar 

  • G.P. Robertson P.R. Grace (2004) ArticleTitleGreenhouse gas fluxes in tropical and temperate agriculture: the need for a full-cost accounting of global warming potentials Environ. Dev. Sustainability 6 51–63 Occurrence Handle10.1023/B:ENVI.0000003629.32997.9e

    Article  Google Scholar 

  • G.P. Robertson K.M. Klingensmith M.J. Klug E.A. Paul J.C. Crum B.G. Ellis (1997) ArticleTitleSoil resources, microbial activity, and primary production across an agricultural ecosystem Ecol. Appl. 7 158–170

    Google Scholar 

  • G.P. Robertson E.A. Paul R.R. Harwood (2000) ArticleTitleGreenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere Science 289 1922–1925 Occurrence Handle10.1126/science.289.5486.1922 Occurrence Handle10988070

    Article  PubMed  Google Scholar 

  • L.A. Sherrod G.A. Peterson D.G. Westfall L.R. Ahuja (2003) ArticleTitleCropping intensity enhances soil organic carbon and nitrogen in a no-till agroecosystem Soil Sci. Soc. Am. J. 67 1533–1543

    Google Scholar 

  • J. Six S.M. Ogle F.J. Breidt R.T. Conant A.R. Mosier K. Paustian (2004) ArticleTitleThe potential to mitigate global warming with no-tillage management is only realized when practiced in the long term Global Change Biol. 10 155–160 Occurrence Handle10.1111/j.1529-8817.2003.00730.x

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA) 2002. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2000. Office of Atmospheric Programs (6201J). Environmental Protection Agency 236-R-00-001.

  • T.O. West G. Marland (2002) ArticleTitleA synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States Agricult. Ecosyst. Environ. 91 217–232 Occurrence Handle10.1016/S0167-8809(01)00233-X

    Article  Google Scholar 

  • T.O. West W.M. Post (2002) ArticleTitleSoil organic carbon sequestration rates by tillage and crop rotation: a global data analysis Soil Sci. Soc. Am. J. 66 1930–1946

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.R. Mosier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mosier, A., Halvorson, A., Peterson, G. et al. Measurement of Net Global Warming Potential in Three Agroecosystems. Nutr Cycl Agroecosyst 72, 67–76 (2005). https://doi.org/10.1007/s10705-004-7356-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-004-7356-0

Key words

Navigation