Skip to main content
Log in

Source identification of nitrate on Cheju Island, South Korea

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Stable isotopes of nitrogen were used to identify sources of nitrate contamination to groundwater on Cheju, a subtropical island off the southernmost tip of the Korean peninsula. The δ15N ranges of potential animal waste and fertilizer N sources on the island were similar to those previously reported in the USA, Europe, and Africa. A total of 108 soil pore water samples were collected between January and October 1998 from fertilized soils below soybean fields and citrus groves. Low concentrations of nitrate below fertilized soybean fields indicated that it is highly unlikely that these fields contribute significant N to the groundwater problem on Cheju. The low average δ15N value of +1.9 ± 2.1‰ in pore-water nitrate and the even lower δ15N values after the fertilizer flush suggest that low levels of mineralized N are released from the bean roots or nodules. Located in the western region, the bean fields received less rainfall than the citrus groves in the southern region. Pore-water below citrus trees contained considerably higher nitrate levels, and the δ15N values became cyclically enriched after the initial fertilizer flush. Although denitrification can be expected in warm, wet soils high in organic-C content in the southern region of Cheju, it was not supported by pore-water or groundwater chemistry. Isotopic enrichment in soil pore-water is caused primarily by volatilization of ammonium-based fertilizers. Since isotopic fractionation in the soils did not exceed +4‰, source identification was possible. The dominant sources of nitrate contamination to Cheju groundwater were identified as commercial N-fertilizer applications to citrus, and, in the Seogwipo municipality, human or animal wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aravena R., Evans M.L. and Cherry J.A. 1993. Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Wat. 31: 180–186

    CAS  Google Scholar 

  • Bates H.K. and Spalding R.F. 1998. Aquifer denitrification as interpreted from in situ microcosm experiments. J. Environ. Qual. 27: 174–182

    CAS  Google Scholar 

  • Berndt M.P. 1990. Sources and distribution of nitrate in groundwater at a farmed field irrigated with sewage treatment plant effluent, Tallahassee, Florida. US Geol. Surv. Water Res. Investigation Report 90-4006

  • Böhlke J.K. and Coplen T.B. 1995. Interlaboratory comparison of reference materials for nitrogen-isotope-ratio measurements. pp 51–66. In: Proc. of Consultants Meeting, Vienna. IAEA-TECDOC-825

  • Böhlke J.K. and Denver J.M. 1995. Combined use of groundwater dating, chemical and isotopic analyses to resolve the history and the fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Wat. Resour. Res. 31: 2319–2339

    Google Scholar 

  • Bremner J.M. and Edwards A.P. 1965. Determination and isotope-ratio analysis of different forms of nitrogen in soils. I. Apparatus and procedure for distillation and determination of ammonium. Soil Sci. Soc. Am. Proc. 29: 504–507

    CAS  Google Scholar 

  • Bremner J.M. and Keeney D.R. 1965. Steam distillation method for determination of ammonium, nitrate, and nitrite. Anal. Chim. Acta. 32: 485–495

    Article  CAS  Google Scholar 

  • Chien S., Shearer H.G. and Kohl D.H. 1977. The nitrogen isotope effect associated with nitrate and nitrite loss from waterlogged soils. Soil Sci. Soc. Am. J. 41: 63–69

    CAS  Google Scholar 

  • Cline J.D. 1973. Denitrification and isotopic fractionation in two contrasting marine environments: the eastern tropical North Pacific Ocean and the Cariaco Trench. Ph.D. Thesis, University of California, Los Angeles

    Google Scholar 

  • Exner M.E. and Spalding R.F. 1994. N-15 identification of nonpoint sources of nitrate contamination beneath cropland in the Nebraska Panhandle: two case studies. Appl. Geochem. 9: 73–81

    Article  CAS  Google Scholar 

  • Federal Register 1975. National Interim Primary Drinking Water Standards. 40: 59566–59588

    Google Scholar 

  • Gormly J.R. and Spalding R.F. 1979. Sources and concentrations of nitrate-nitrogen in ground water of the central Platte region, Nebraska. Ground Water 17: 291–301

    CAS  Google Scholar 

  • Green A.R., Feast N.A., Hiscock K.M. and Dennis P.F. 1998. Identification of the source and fate of nitrate contamination of Jersey bedrock aquifer using stable isotopes of nitrogen. In: Robbins N.S. (ed.). Groundwater pollution, aquifer recharge and vulnerability The Geological Society, London, UK

    Google Scholar 

  • Hyun S. 1996. Direction of sustainable agriculture for environmental preservation in Cheju Island. In: The International Symposium for Sustainable Agriculture, pp. 117–139. Subtropical Horticulture Research Center, Chejdo, Korea

    Google Scholar 

  • Igbal M.Z., Krothe N.C. and Spalding R.F. 1997. Nitrogen isotope indicators of seasonal variability to ground water. Environ. Geol. 32: 210–218

    Google Scholar 

  • Junk G. and Svec H.J. 1958. The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim. Cosmochim. Acta. 14: 234–243

    Article  CAS  Google Scholar 

  • Kim S.H., Song Y.C., Ko Y.G. and U Z.K. 1996. Groundwater quality characteristics on Cheju Island. In: The International Symposium for Sustainable Agriculture, pp. 83–116. Subtropical Horticulture Research Center, Chejdo, Korea

    Google Scholar 

  • Komor S.C. and Anderson H.W. Jr. 1993. Nitrogen isotopes as indicators of nitrate sources in the Minnesota sand-plain aquifers. Ground Wat. 31: 260–270

    CAS  Google Scholar 

  • Korom S.F. 1992. Natural denitrification in the saturated zone: a review. Wat. Resour. Res. 28: 1657–1668

    CAS  Google Scholar 

  • Kumazawa K. 1996. Nitrate pollution in groundwater of Japan. In: The International Symposium for Sustainable Agriculture, pp. 83–116. Subtropical Horticulture Research Center, Chejdo, Korea

    Google Scholar 

  • Kreitler C.W. 1975. Determining the source of nitrate in groundwater by nitrogen isotope studies. Rept. Univ. Texas Bur. Econ. Geol. 83, Austin

  • Létolle R. 1980. Nitrogen-15 in the natural environment. In: Fritz P. & Fontes J.Ch. (eds.) Handbook of Environmental Isotope Geochemistry, pp. 407–429. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Mariotti A., Landreau A. and Simon B. 1988. 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the Chalk aquifer of northern France. Geochim. Cosmochim. Acta. 52: 1869–1878

    Article  CAS  Google Scholar 

  • Miyaka Y. and Wada E. 1967. The abundance ratio of 15N/14N in marine environments. Records Oceanogr. Works Japan 9: 37–53

    Google Scholar 

  • Schepers J.S. and Mosier A.R. 1991. Accounting for nitrogen in nonequilibrium soil crop systems. In: Follett R.F., Keeney D.R. & Cruse R.M. (eds.) Managing nitrogen for groundwater quality and farm profitability, pp. 125–128. American Society of Agronomy, Soil Science Society of America, Madison, WI

    Google Scholar 

  • Shin C. 1996. The present condition of nitrate in groundwater in South Korea. In: The International Symposium for Sustainable Agriculture, Subtropical Horticulture Research Center, Chejdo, Korea, pp. 65–80.

    Google Scholar 

  • Smith R.L., Howes B.L. and Duff J.H. 1991. Denitrification in nitrate-contaminated ground water: occurrence in steep vertical geochemical gradients. Geochim. Cosmochim. Acta. 55: 1815–1825

    CAS  Google Scholar 

  • Spalding R.F. and Exner M.E. 1993. Occurrence of nitrate in groundwater — a review. J. Environ. Qual. 22: 392–402

    CAS  Google Scholar 

  • Spalding R.F., Exner M.E., Lindau C.W. and Eaton DW 1982. Investigation of sources of groundwater nitrate contamination in the Burbank-Wallula area of Washington, U.S.A. J. Hydrol. 58: 307–324

    Article  CAS  Google Scholar 

  • Spalding R.F., Exner M.E., Martin G.E. and Snow D.D. 1993. Effects of sludge disposal on groundwater nitrate concentrations. J. Hydrol. 141: 213–228

    Google Scholar 

  • Tiedje J.M. 1994. Denitrifiers. In: Klute A., Weaver R.W., Mickelson S.H., Sparks D.L. & Bartels J.M. (eds) Methods of Soil Analysis, Part II. Microbiological and Biochemical Properties, pp. 245–267. American Society of Agronomy, Soil Science Society of America, Madison, WI

    Google Scholar 

  • Varvel G.E. and Peterson T.A. 1990. Residual soil nitrogen as affected by continuous two-year and four-year crop rotation systems. Agron. J. 82: 958–968

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spalding, R., U, Z., Hyun, S. et al. Source identification of nitrate on Cheju Island, South Korea. Nutrient Cycling in Agroecosystems 61, 237–246 (2001). https://doi.org/10.1007/s10705-004-1476-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-004-1476-4

Navigation