Skip to main content
Log in

Impact of alternating corrosion and fatigue on the fatigue life of a 7475-T7351 aluminum alloy in an aircraft beam structure

  • Research
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This study compares the fatigue life of a 7475-T7351 aluminum alloy lower wall plate in an aircraft beam structure under alternating corrosion and fatigue conditions to universal fatigue life. It incorporates a corrosive environment and variable amplitude fatigue loads. The current study uses the “beach marking” technique and visual inspection to monitor crack propagation and evaluate the corrosive environment’s impact on fatigue life and damage tolerance. The experimental results indicate that during the fatigue crack initiation and penetration stages, the corrosion environment does not significantly impact the fatigue life of the beam structure because of the protection from uniform oxide films, epoxy primer, and sealants at joints. In the crack propagation stage, the corrosive environment speeds up crack growth compared to universal fatigue tests. Additionally, a “hysteresis effect” in alternating corrosion and fatigue tests shows the fatigue crack growth rate changing discontinuously, caused mainly by corrosion dissolving slip bands at the crack tip. Altogether, this study provides new insights into the influence of alternating corrosion and variable amplitude load on an aircraft beam structure’s fatigue life and damage tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aliabadi M (2003) 3.02-boundary element methods in linear elastic fracture mechanics. Comprehensive Structural Integrity, Pergamon, Oxford, pp 89–125

  • Al-Rubaie KS, Barroso EK, Godefroid LB (2006) Fatigue crack growth analysis of pre-strained 7475-t7351 aluminum alloy. Int J Fatigue 28(8):934–942

    Article  Google Scholar 

  • Arab A, Chen P, Guo Y (2019) Effects of microstructure on the dynamic properties of TA15 titanium alloy. Mech Mater 137:103121

    Article  Google Scholar 

  • Cao J, Lin H, Liu Z, Yao W (2023) Thermal-mechanical-equivalent fatigue load method for mechanically fastened hybrid-material structures. Int J Fatigue, p 107906

  • Chakraborty P, Tiwari V (2023) Dynamic fracture behaviour of AA7475-T7351 alloy at different strain rates and temperatures. Eng Fract Mech 279:109065

    Article  Google Scholar 

  • Chemin A, Spinelli D, Bose Filho W, Ruchert C (2015) Corrosion fatigue crack growth of 7475 t7351 aluminum alloy under flight simulation loading. Procedia Eng 101:85–92

    Article  Google Scholar 

  • Chen W, Lu W, Gou G, Dian L, Zhu Z, Jin J (2023) The effect of fatigue damage on the corrosion fatigue crack growth mechanism in A7N01P-T4 aluminum alloy. Metals 13(1):104

    Article  Google Scholar 

  • Chubb J, Morad T, Hockenhull B, Bristow J (1995) The effect of exfoliation corrosion on the fracture and fatigue behaviour of 7178-T6 aluminium. Int J Fatigue 17(1):49–54

    Article  Google Scholar 

  • Dan Z, Takigawa S, Muto I, Hara N (2011) Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys. Corros Sci 53(5):2006–2014

    Article  Google Scholar 

  • De Jong J, Schütz D, Lowak H, Schijve J (1973) A standardized load sequence for flight simulation tests on transport aircraft wing structures, NLR-TR 73029 U, LBF Bericht FB-106

  • Dechwayukul C, Rubin CA, Hahn GT (2003) Analysis of the effects of thin sealant layers in aircraft structural joints. AIAA J 41(11):2216–2228

    Article  Google Scholar 

  • Dümig P (2022) Transformation of in-flight measured loads to a fatigue test spectrum

  • Edwards P, Newman JC Jr (1990) Short-crack growth behaviour in various aircraft materials, no. AGARD-R-767

  • Emdad R, Al-Mahaidi R (2015) Effect of prestressed CFRP patches on crack growth of centre-notched steel plates. Compos Struct 123:109–122

    Article  Google Scholar 

  • Ferreira N, Jesus J, Ferreira J, Capela C, Costa J, Batista A (2020) Effect of bead characteristics on the fatigue life of shot peened Al 7475-T7351 specimens. Int J Fatigue 134:105521

    Article  Google Scholar 

  • Gao T, Sun Z, Xue H, Retraint D (2020) Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075-T6 aluminium alloy. Int J Fatigue 139:105798

    Article  Google Scholar 

  • Grbovic A, Rasuo B (2012) Fem based fatigue crack growth predictions for spar of light aircraft under variable amplitude loading. Eng Failure Anal 26:50–64

    Article  Google Scholar 

  • Grover HJ (1966) Fatigue of aircraft structures, US Government Printing Office

  • He X, Li T, Li Y, Dong Y, Wang T (2018) Developing an accelerated flight load spectrum based on the nz-n curves of a fleet. Int J Fatigue 117:246–256

    Article  Google Scholar 

  • Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller W (2000) Recent development in aluminium alloys for aerospace applications. Mater Sci Eng: A 280(1):102–107

    Article  Google Scholar 

  • Heuler P, Klätschke H (2005) Generation and use of standardised load spectra and load-time histories. Int J Fatigue 27(8):974–990

    Article  Google Scholar 

  • Huang Y, Zhang J et al (2018) Materials corrosion and protection. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  • Jesus J, Borrego L, Ferreira J, Costa J, Capela C (2020) Fatigue crack growth under corrosive environments of Ti-6Al-4V specimens produced by slm. Eng Fail Anal 118:104852

    Article  Google Scholar 

  • Jing C, Wang R, Zhao F, Zhang L, He Q, Tong X (2021) Preparation of 1060, 2024 and 7075 aluminum alloy anodic oxide films. Coatings 11(12):1498

    Article  Google Scholar 

  • Jono M (2005) Fatigue damage and crack growth under variable amplitude loading with reference to the counting methods of stress-strain ranges. Int J Fatigue 27(8):1006–1015

    Article  Google Scholar 

  • Kamath GM, Mangalgiri PD, Shet A (2022) A quantitative assessment of the impact of corrosion on fatigue life of aircraft components. Eng Fail Anal 133:105973

    Article  Google Scholar 

  • Kazanowski P (2008) Die performance optimization through understanding of the surface features of fatigue fractures. In: Proceedings of the ninth international aluminum extrusion technology seminar

  • Kim J-K, Shim D-S (2000) The variation in fatigue crack growth due to the thickness effect. Int J Fatigue 22(7):611–618

    Article  Google Scholar 

  • Kim ST, Tadjiev D, Yang HT (2006) Fatigue life prediction under random loading conditions in 7475-T7351 aluminum alloy using the rms model. Int J Damage Mech 15(1):89–102

    Article  Google Scholar 

  • Lepretre E, Chataigner S, Dieng L, Gaillet L (2018) Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material. Constr Build Mater 174:421–432

    Article  Google Scholar 

  • Leygraf C, Wallinder IO, Tidblad J, Graedel T (2016) Atmospheric corrosion. Wiley, New York

    Book  Google Scholar 

  • Li T (2009) The initial corrosion behavior and mechanism of aluminium alloys in Xisha atmospheric environment. In: University of Science and Technology Beijing

  • Li L, Pan X, Liu B, Liu B, Li P, Liu Z (2023) Strength and toughness of hot-rolled TA15 aviation titanium alloy after heat treatment. Aerospace 10(5):436

    Article  Google Scholar 

  • Lynch S (1994) Failures of structures and components by envirnomentally assisted cracking. Eng Fail Anal 1(2):77–90

    Article  Google Scholar 

  • Mishra R (2020) Study the effect of pre-corrosion on mechanical properties and fatigue life of aluminum alloy 8011. Mater Today: Proc 25:602–609

    Google Scholar 

  • Nakai M, Eto T (2000) New aspect of development of high strength aluminum alloys for aerospace applications. Mater Sci Eng: A 285(1–2):62–68

    Article  Google Scholar 

  • Ohnistova P, Piska M, Petrenec M, Dluhos J, Hornikova J, Sandera P (2019) Fatigue life of 7475-T7351 aluminum after local severe plastic deformation caused by machining. Materials 12(21):3605

    Article  Google Scholar 

  • Payne J, Welsh G, Christ RJ Jr, Nardiello J, Papazian JM (2010) Observations of fatigue crack initiation in 7075-T651. Int J Fatigue 32(2):247–255

    Article  Google Scholar 

  • Quazi M, Ishak M, Fazal M, Arslan A, Rubaiee S, Qaban A, Aiman M, Sultan T, Ali M, Manladan S (2020) Current research and development status of dissimilar materials laser welding of titanium and its alloys. Opt Laser Technol 126:106090

    Article  Google Scholar 

  • Schütz D (1969) Establishment of a standardized flight-by-flight program for aircraft wings. In: Review of investigations on aeronautical fatigue in the Federal Republic of Germany, Fraunhofer-Institut für Betriebsfestigkeit (LBF) Darmstadt

  • Stephens R, Dindinger P, Gunger J (1997) Fatigue damage editing for accelerated durability testing using strain range and SWT parameter criteria. Int J Fatigue 19(8–9):599–606

    Article  Google Scholar 

  • Tavares S, De Castro P (2017) An overview of fatigue in aircraft structures. Fatigue Fract Eng Mater Struct 40(10):1510–1529

    Article  Google Scholar 

  • Vandijk G, Dejonge J (1975) Introduction to a fighter aircraft loading standard for fatigue evaluation(falstaff)

  • Wahid MA, Siddiquee AN, Khan ZA (2020) Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint. Mar Syst Ocean Technol 15:70–80

    Article  Google Scholar 

  • Wang Q, Song Y, Zhang X, Dong L, Xi Y, Zeng D, Liu Q, Zhang H, Zhang Z, Yan R, et al (2023) Evolution of corrosion prediction models for oil and gas pipelines: From empirical-driven to data-driven. Eng Fail Anal, p 107097

  • Wanhill RJ, De Luccia JJ (1982) An agard-coordinated corrosion fatigue cooperative testing programme, AGARD

  • Wanhill RJ, De Luccia JJ, Russo M (1989) The fatigue in aircraft corrosion testing (FACT) programme, vol 713. North Atlantic Treaty Organization, Advisory Group for Aerospace Research

  • Wei Y, Li Y, Lai J, Zhao Q, Yang L, Lin Q, Wang X, Pan Z, Lin Z (2020) Analysis on corrosion fatigue cracking mechanism of 17-4PH blade of low pressure rotor of steam turbine. Eng Failure Anal 118:104925

  • Xiong JJ, Shenoi RA (2011) Fatigue and fracture reliability engineering. Springer, Berlin

    Book  Google Scholar 

  • Yadav MK, Sahu AK, Chatterjee S, Mahapatra SS (2021) Experimental study on friction stir welding of AA6061 aluminum alloy. In: Sustainable manufacturing and design. Elsevier, Amsterdam, pp. 133–150

  • Zhang S, Zhang T, He Y, Du X, Ma B, Zhang T (2019a) Long-term atmospheric pre-corrosion fatigue properties of epoxy primer-coated 7075-T6 aluminum alloy structures. Int J Fatigue 129:105225

    Article  Google Scholar 

  • Zhang S, Zhang T, He Y, Feng Y, Du X, Ma B, Zhang T (2019b) Effect of coastal atmospheric corrosion on fatigue properties of 2024-T4 aluminum alloy structures. J Alloys Compd 802:511–521

    Article  Google Scholar 

  • Zhang T, He Y, Li C, Zhang T, Zhang S (2020) Effect of alternate corrosion and fatigue on fatigue crack growth characterization of 2024-T4 aluminum alloy. Math Probl Eng 2020:1–15

    Google Scholar 

  • Zhang T, Zhang T, He Y, Zhang S, Ma B, Gao Z (2021) Long-term atmospheric aging and corrosion of epoxy primer-coated aluminum alloy in coastal environments. Coatings 11(2):237

    Article  Google Scholar 

  • Zhu S-P, Ai Y, Liao D, Correia JA, De Jesus AM, Wang Q (2021) Recent advances on size effect in metal fatigue under defects: a review. Int J Fract, pp 1–23

Download references

Author information

Authors and Affiliations

Authors

Contributions

JZ: Conceptualization, Experiment, Software, Investigation, Validation, Resources, Data curation, Writing—original draft, Writing—review and editing, Visualization. GY: Experiment, Investigation, Validation, Writing—review. CS: Experiment, Investigation, Validation, Writing—review and editing. HL: Investigation, Validation, Resources, Writing—review and editing, Guidance. JH: Resources, Writing—review and editing, Guidance, Supervision.

Corresponding author

Correspondence to Jie Zheng.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Yang, G., Shao, C. et al. Impact of alternating corrosion and fatigue on the fatigue life of a 7475-T7351 aluminum alloy in an aircraft beam structure. Int J Fract (2024). https://doi.org/10.1007/s10704-024-00779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10704-024-00779-2

Keywords

Navigation