Skip to main content
Log in

A fracture energy–based viscoelastic–viscoplastic–anisotropic damage model for rate-dependent cracking of concrete

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A fracture energy-based constitutive model of concrete in the framework of continuum damage mechanics is formulated. Elastic, viscoelastic, and viscoplastic mechanisms are defined in a fictitious undamaged material state, the so-called effective configuration. A linear spring and a linear dashpot characterize the viscoelastic response of concrete. The viscoplastic behavior is also described using a linear spring, a nonlinear dashpot, and a slider with constant frictional resistance. The nonlinear dashpot of the viscoplastic body is formulated using a logarithmic function so that the model can reproduce valid strength magnifications under a wide range of strain rates. As a result, a consistency viscoplastic approach is obtained wherein, in contrast to the so-called overstress viscoplastic laws, the rate effects are induced in the yield surface of the model. A fracture energy-based regularization is employed to adjust the rate of damage growth to obtain mesh-objective results. The directional degradation of concrete is also characterized by a frame-independent tensorial description of damage. Next, a fully implicit return-mapping algorithm based on the Newton–Raphson scheme is proposed. The presented model is then assessed by validating its results with a series of experimental tests. In addition, the mixed-mode fracture of concrete is investigated under different strain rates, verifying the experimentally observed transition of the failure mode from a ductile flexural to a brittle diagonal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Abdullah T, Kirane K (2021) Continuum damage modeling of dynamic crack velocity, branching, and energy dissipation in brittle materials. Int J Fract 229(1):15–37

    Article  Google Scholar 

  • Al-Rub RKA, Darabi MK (2012) A thermodynamic framework for constitutive modeling of time-and rate-dependent materials. Part I. Theory. Int J Plast 34:61–92

    Article  Google Scholar 

  • Al-Rub RKA, Voyiadjis GZ (2006) A physically based gradient plasticity theory. Int J Plast 22(4):654–684

    Article  MATH  Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48(13):1962–1990

    Article  Google Scholar 

  • Balieu R, Kringos N (2015) A new thermodynamical framework for finite strain multiplicative elastoplasticity coupled to anisotropic damage. Int J Plast 70:126–150

    Article  Google Scholar 

  • Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Matériaux Construct 16(3):155–177

    Article  Google Scholar 

  • Bažant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55(2):287

    Article  MATH  Google Scholar 

  • Bažant ZP, Xiang Y, Prat PC (1996) Microplane model for concrete. I: Stress-strain boundaries and finite strain. J Eng Mech 122(3):245–254

    Google Scholar 

  • Bažant ZP, Adley MD, Carol I, Jirásek M, Akers SA, Rohani B, Cargile JD, Caner FC (2000) Large-strain generalization of microplane model for concrete and application. J Eng Mech 126(9):971–980

    Google Scholar 

  • Bažant ZP, Caner FC, Adley MD, Akers SA (2000) Fracturing rate effect and creep in microplane model for dynamics. J Eng Mech 126(9):962–970

    Google Scholar 

  • Bazoant Z, Pijaudier-Cabot G (1989) Measurement of characteristic length of nonlocal continuum. J Eng Mech 115(4):755–767

    Google Scholar 

  • Bischoff P, Perry S (1991) Compressive behaviour of concrete at high strain rates. Mater Struct 24(6):425–450

    Article  Google Scholar 

  • Brünig M, Michalski A (2017) A stress-state-dependent continuum damage model for concrete based on irreversible thermodynamics. Int J Plast 90:31–43

    Article  Google Scholar 

  • Červenka J, Papanikolaou VK (2008) Three dimensional combined fracture-plastic material model for concrete. Int J Plast 24(12):2192–2220

    Article  MATH  Google Scholar 

  • Chow C, Wang J (1987) An anisotropic theory of continuum damage mechanics for ductile fracture. Eng Fract Mech 27(5):547–558

    Article  Google Scholar 

  • Cicekli U, Voyiadjis GZ, Al-Rub RKA (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plast 23(10–11):1874–1900

    Article  MATH  Google Scholar 

  • Coussy O, Ulm FJ (1996) Creep and plasticity due to chemo-mechanical couplings. Arch Appl Mech 66(8):523–535

    Article  MATH  Google Scholar 

  • Daneshyar A, Ghaemian M (2017) Coupling microplane-based damage and continuum plasticity models for analysis of damage-induced anisotropy in plain concrete. Int J Plast 95:216–250

    Article  Google Scholar 

  • Daneshyar A, Ghaemian M (2020) Fe\(^2\) investigation of aggregate characteristics effect on fracture properties of concrete. Int J Fract 226(2):243–261

    Article  Google Scholar 

  • Daneshyar A, Sotoudeh P, Ghaemian M (2022) The scaled boundary finite element method for dispersive wave propagation in higher-order continua. Int J Numer Methods Eng. https://doi.org/10.1002/nme.7147

    Article  MATH  Google Scholar 

  • Darabi MK, Al-Rub RKA, Masad EA, Huang CW, Little DN (2011) A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials. Int J Solids Struct 48(1):191–207

    Article  MATH  Google Scholar 

  • Darabi MK, Al-Rub RKA, Masad EA, Little DN (2012) A thermodynamic framework for constitutive modeling of time-and rate-dependent materials. Part ii: Numerical aspects and application to asphalt concrete. Int J Plast 35:67–99

    Article  Google Scholar 

  • de Borst R (2013) Computational methods for generalised continua. Generalized continua from the theory to engineering applications. Springer, New York, pp 361–388

    Chapter  Google Scholar 

  • de Borst R, Verhoosel CV (2016) Gradient damage vs phase-field approaches for fracture: Similarities and differences. Comput Methods Appl Mech Eng 312:78–94

    Article  MathSciNet  MATH  Google Scholar 

  • de Borst R, Pamin J, Peerlings R, Sluys L (1995) On gradient-enhanced damage and plasticity models for failure in quasi-brittle and frictional materials. Computat Mech 17(1):130–141

    Article  MATH  Google Scholar 

  • Fish J, Chen W, Nagai G (2002) Non-local dispersive model for wave propagation in heterogeneous media: multi-dimensional case. Int J Numer Methods Eng 54(3):347–363

    Article  MathSciNet  MATH  Google Scholar 

  • Fish J, Chen W, Nagai G (2002) Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int J Numer Methods Eng 54(3):331–346

    Article  MathSciNet  MATH  Google Scholar 

  • Florea D (1994) Associated elastic/viscoplastic model for bituminous concrete. Int J Eng Sci 32(1):79–86

    Article  MATH  Google Scholar 

  • Florea D (1994) Nonassociated elastic/viscoplastic model for bituminous concrete. Int J Eng Sci 32(1):87–93

    Article  MATH  Google Scholar 

  • Fu L, Zhou XP, Berto F (2022) A three-dimensional non-local lattice bond model for fracturing behavior prediction in brittle solids. Int J Fract 1:1–15

    Google Scholar 

  • Gálvez J, Elices M, Guinea G, Planas J (1998) Mixed mode fracture of concrete under proportional and nonproportional loading. Int J Fract 94(3):267–284

    Article  Google Scholar 

  • Gambarelli S, Ožbolt J (2020) Dynamic fracture of concrete in compression: 3d finite element analysis at meso-and macro-scale. Continuum Mech Thermodyn 32(6):1803–1821

    Article  Google Scholar 

  • Gatuingt F, Pijaudier-Cabot G (2002) Coupled damage and plasticity modelling in transient dynamic analysis of concrete. Int J Numer Anal Methods Geomech 26(1):1–24

    Article  MATH  Google Scholar 

  • Gitman IM, Askes H, Aifantis EC (2005) The representative volume size in static and dynamic micro-macro transitions. Int J Fract 135(1):L3–L9

    Article  MATH  Google Scholar 

  • González JM, Canet JM, Oller S, Miró R (2007) A viscoplastic constitutive model with strain rate variables for asphalt mixtures-numerical simulation. Comput Mater Sci 38(4):543–560

    Article  Google Scholar 

  • Gopalaratnam V, Shah SP (1985) Softening response of plain concrete in direct tension. ACI J Proc 82(3):310–323

    Google Scholar 

  • Grassl P, Jirásek M (2006) Damage-plastic model for concrete failure. Int J Solids Struct 43(22–23):7166–7196

    Article  MATH  Google Scholar 

  • Grassl P, Xenos D, Nyström U, Rempling R, Gylltoft K (2013) Cdpm2: A damage-plasticity approach to modelling the failure of concrete. Int J Solids Struct 50(24):3805–3816

    Article  Google Scholar 

  • Häussler-Combe U, Hartig J (2008) Formulation and numerical implementation of a constitutive law for concrete with strain-based damage and plasticity. Int J Non-Linear Mech 43(5):399–415

    Article  Google Scholar 

  • Huang CW, Abu Al-Rub RK, Masad EA, Little DN (2011) Three-dimensional simulations of asphalt pavement permanent deformation using a nonlinear viscoelastic and viscoplastic model. J Mater Civ Eng 23(1):56–68

    Article  Google Scholar 

  • Huang CW, Abu Al-Rub RK, Masad EA, Little DN, Airey GD (2011) Numerical implementation and validation of a nonlinear viscoelastic and viscoplastic model for asphalt mixes. Int J Pavement Eng 12(4):433–447

    Article  Google Scholar 

  • Iacono C, Sluys L, Van Mier J (2020) Parameters identification of a nonlocal continuum damage model. Computational modelling of concrete structures. CRC Press, New York, pp 353–362

    Google Scholar 

  • Jansson S, Stigh U (1985) Influence of cavity shape on damage parameter. J Appl Mech 52(3):609–614

    Article  Google Scholar 

  • Jason L, Huerta A, Pijaudier-Cabot G, Ghavamian S (2006) An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model. Comput Methods Appl Mech Eng 195(52):7077–7092

    Article  MATH  Google Scholar 

  • Jenq Y, Shah SP (1985) Two parameter fracture model for concrete. J Eng Mech 111(10):1227–1241

    Google Scholar 

  • Jirásek M (1999) Comments on microplane theory. Mech Quasi-brittle Mater Struct 1:55–77

    Google Scholar 

  • Jirásek M, Allix O (2019) Analysis of self-similar rate-dependent interfacial crack propagation in mode ii. Int J Fract 220(1):45–83

    Article  Google Scholar 

  • Jirásek M, Desmorat R (2019) Localization analysis of nonlocal models with damage-dependent nonlocal interaction. Int J Solids Struct 174:1–17

    Article  Google Scholar 

  • John R, Shah SP (1990) Mixed-mode fracture of concrete subjected to impact loading. J Struct Eng 116(3):585–602

    Article  Google Scholar 

  • Karsan ID, Jirsa JO (1969) Behavior of concrete under compressive loadings. J Struct Div 95(12):2543–2564

    Article  Google Scholar 

  • Kioseoglou J, Dimitrakopulos G, Komninou P, Karakostas T, Aifantis E (2008) Dislocation core investigation by geometric phase analysis and the dislocation density tensor. J Phys D 41(3):035408

    Article  Google Scholar 

  • Konate L, Kondo D, Ponson L (2021) Numerical fracture mechanics based prediction for the roughening of brittle cracks in 2d disordered solids. Int J Fract 230(1):225–240

    Google Scholar 

  • Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124(8):892–900

    Google Scholar 

  • Liu X, Lee C, Grassl P (2022) On the modelling of the rate dependence of strength using a crack-band based damage model for concrete. Computational modelling of concrete and concrete structures. CRC Press, New York, pp 520–524

    Chapter  Google Scholar 

  • Liu Y, Yang F, Zhang X, Zhang J, Zhong Z (2022) Crack propagation in gradient nano-grained metals with extremely small grain size based on molecular dynamic simulations. Int J Fract 1:1–13

    Google Scholar 

  • Lu T, Chow C (1990) On constitutive equations of inelastic solids with anisotropic damage. Theoret Appl Fract Mech 14(3):187–218

    Article  MathSciNet  Google Scholar 

  • Lu Y, Wright P (1998) Numerical approach of visco-elastoplastic analysis for asphalt mixtures. Comput Struct 69(2):139–147

    Article  MATH  Google Scholar 

  • Lu Y, Wright PJ (2000) Temperature related visco-elastoplastic properties of asphalt mixtures. J Transport Eng 126(1):58–65

    Article  Google Scholar 

  • Lu Y, Xu K (2004) Modelling of dynamic behaviour of concrete materials under blast loading. Int J Solids Struct 41(1):131–143

    Article  Google Scholar 

  • Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Article  Google Scholar 

  • Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J 95:735–739

    Google Scholar 

  • Menzel A, Steinmann P (2000) On the continuum formulation of higher gradient plasticity for single and polycrystals. J Mech Phys Solids 48(8):1777–1796

    Article  MathSciNet  MATH  Google Scholar 

  • Mihai I, Bains A, Grassl P (2021) Modelling of cracking mechanisms in cementitious materials: The transition from diffuse microcracking to localized macrocracking. Computational modelling of concrete and concrete structures. CRC Press, New York, pp 212–216

    Google Scholar 

  • Needleman A, Tvergaard V (1984) An analysis of ductile rupture in notched bars. J Mech Phys Solids 32(6):461–490

    Article  Google Scholar 

  • Nguyen GD, Houlsby GT (2008) A coupled damage-plasticity model for concrete based on thermodynamic principles: Part i: model formulation and parameter identification. Int J Numer Anal Methods Geomech 32(4):353–389

    Article  MATH  Google Scholar 

  • Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Methods Eng 28(2):461–474

    Article  MATH  Google Scholar 

  • Ortiz M (1985) A constitutive theory for the inelastic behavior of concrete. Mech Mater 4(1):67–93

    Article  Google Scholar 

  • Ožbolt J, Gambarelli S (2018) Microplane model with relaxed kinematic constraint in the framework of micro polar cosserat continuum. Eng Fract Mech 199:476–488

    Article  Google Scholar 

  • Ožbolt J, Reinhardt H (2005) Rate dependent fracture of notched plain concrete beams. In: Proceedings of the 7th international conference CONCREEP-7, Ecole Centrale de Nantes Wiley, France. pp 57–62

  • Ožbolt J, Sharma A (2012) Numerical simulation of dynamic fracture of concrete through uniaxial tension and l-specimen. Eng Fract Mech 85:88–102

    Article  Google Scholar 

  • Ožbolt J, Rah KK, Meštrović D (2006) Influence of loading rate on concrete cone failure. Int J Fract 139(2):239–252

    Article  Google Scholar 

  • Ožbolt J, Sharma A, Reinhardt HW (2011) Dynamic fracture of concrete-compact tension specimen. Int J Solids Struct 48(10):1534–1543

    Article  MATH  Google Scholar 

  • Pedersen R, Simone A, Sluys L (2008) An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model. Eng Fract Mech 75(13):3782–3805

    Article  Google Scholar 

  • Pedersen R, Simone A, Sluys L (2013) Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete. Cem Concr Res 50:74–87

    Article  Google Scholar 

  • Pedersen RR, Simone A, Sluys LJ (2006) Continuous-discontinuous modelling of dynamic failure of concrete using a viscoelastic viscoplastic damage model. III European conference on computational mechanics. Springer, Berlin, pp 370–370

    Chapter  Google Scholar 

  • Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354

    Article  MATH  Google Scholar 

  • Peschel G (1968) The viscosity of thin water films between two quartz glass plates. Matériaux et Construction 1(6):529–534

    Article  Google Scholar 

  • Reinhardt H, Ožbolt J, Travaš V (2010) Response of concrete members to impact loading, dynamic fracture of concrete–compact tension specimen. FraMCoS-7, Jeju, Korea, May 23e28 Korea Concrete Institute 1701–1714

  • Schapery RA (1969) On the characterization of nonlinear viscoelastic materials. Polym Eng Sci 9(4):295–310

    Article  Google Scholar 

  • Sciegaj A, Grassl P, Larsson F, Runesson K, Lundgren K (2020) Upscaling of three-dimensional reinforced concrete representative volume elements to effective beam and plate models. Int J Solids Struct 202:835–853

    Article  Google Scholar 

  • Sercombe J, Ulm FJ, Toutlemonde F (1998) Viscous hardening plasticity for concrete in high-rate dynamics. J Eng Mech 124(9):1050–1057

    Google Scholar 

  • Shakiba M, Al-Rub RKA, Darabi MK, You T, Masad EA, Little DN (2013) Continuum coupled moisture-mechanical damage model for asphalt concrete. Transp Res Rec 2372(1):72–82

    Article  Google Scholar 

  • Shakiba M, Darabi MK, Abu Al-Rub RK, Little DN, Masad EA (2015) Constitutive modeling of the coupled moisture-mechanical response of particulate composite materials with application to asphalt concrete. J Eng Mech 141(2):04014120

    Google Scholar 

  • Shakiba M, Darabi MK, Abu Al-Rub RK, You T, Little DN, Masad EA (2015) Three-dimensional microstructural modelling of coupled moisture-mechanical response of asphalt concrete. Int J Pavement Eng 16(5):445–466

    Article  Google Scholar 

  • Sides A, Uzan J, Perl M (1985) A comprehensive viscoelasto-plastic characterization of sand-asphalt compressive and tensile cyclic loading. J Test Evaluat 13(1):49–59

    Article  Google Scholar 

  • Tashman L, Masad E, Zbib H, Little D, Kaloush K (2004) Anisotropic viscoplastic continuum damage model for asphalt mixes. In: Recent Advances in Materials Characterization and Modeling of Pavement Systems, pp 111–125

  • Trampczynski W, Hayhurst D, Leckie F (1981) Creep rupture of copper and aluminium under non-proportional loading. J Mech Phys Solids 29(5):353–374

  • Travaš V, Ožbolt J, Kožar I (2009) Failure of plain concrete beam at impact load: 3d finite element analysis. Int J Fract 160(1):31–41

    Article  MATH  Google Scholar 

  • Uzan J (2005) Viscoelastic-viscoplastic model with damage for asphalt concrete. J Mater Civ Eng 17(5):528–534

    Article  Google Scholar 

  • Voyiadjis GZ, Taqieddin ZN, Kattan PI (2008) Anisotropic damage-plasticity model for concrete. Int J Plast 24(10):1946–1965

    Article  MATH  Google Scholar 

  • Wang J, Chow C (1989) Mixed mode ductile fracture studies with nonproportional loading based on continuum damage mechanics. J Eng Mater Technol 111(2):204–209

    Article  Google Scholar 

  • Wang W, Sluys L, de Borst R (1997) Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int J Numer Methods Eng 40(20):3839–3864

    Article  MATH  Google Scholar 

  • Wu JY, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids Struct 43(3–4):583–612

    Article  MATH  Google Scholar 

  • Yu H, Muhunthan B, Shen S (2014) Anisotropic nonlinear elastoviscoplastic model for rutting of asphalt mixtures. J Eng Mech 140(2):242–249

    Google Scholar 

  • Zehnder AT (2012) Fracture mechanics, vol 62. Springer, Berlin

    Book  Google Scholar 

  • Zhang Y, Bernhardt M, Biscontin G, Luo R, Lytton RL (2015) A generalized drucker-prager viscoplastic yield surface model for asphalt concrete. Mater Struct 48(11):3585–3601

    Article  Google Scholar 

  • Zhu Q, Zhou C, Shao JF, Kondo D (2010) A discrete thermodynamic approach for anisotropic plastic-damage modeling of cohesive-frictional geomaterials. Int J Numer Anal Methods in Geomech 34(12):1250–1270

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by Iran National Science Foundation (Grant No. 97023017), the National Key Research and Development Plan, Intergovernmental Key Projects for International Scientific and Technological Cooperation (Grant No. 2018YFE0122400), and National Natural Science Foundation of China (Grant Nos. 11372098 and 51579084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ghaemian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshyar, A., Ghaemian, M. & Du, C. A fracture energy–based viscoelastic–viscoplastic–anisotropic damage model for rate-dependent cracking of concrete. Int J Fract 241, 1–26 (2023). https://doi.org/10.1007/s10704-022-00685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-022-00685-5

Keywords

Navigation