Skip to main content
Log in

Conservation laws for arbitrary objectives with application to fracture resistant design

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, we pose a configurational optimization problem to derive the sensitivity of an arbitrary objective to arbitrary motions of one or more finite-sized heterogeneities inserted into a homogeneous domain. In the derivation, we pose an adjoint boundary value problem and utilize the adjoint fields as well as the definition of a generalized Eshelby energy-momentum tensor for arbitrary objectives to express the final result. The resulting sensitivity may be expressed as surface integrals with jump terms across the heterogeneity boundaries that vanish on homogeneous domains yielding generalized conservation laws for arbitrary objectives. We then derive the specific path-independent forms of the sensitivity of the objective to arbitrary translation, rotation or scaling of the inserted heterogeneities. We next illustrate the application of the derived sensitivities to specific objectives common to fracture mechanics as well as to structural optimization. The chosen objectives include strain energy, trade-off between structural compliance and mass, and an arbitrary objective defined entirely on the boundary of the domain. We show that for the strain energy objective, the derived sensitivities naturally yield the classical J-, L- and M-integrals of fracture mechanics. The theory is implemented within an Isogeometric computational framework for fracture modeling termed Enriched Isogeometric analysis (EIGA). The EIGA computational technique is used to optimally identify worst-case locations for line cracks that are inserted into the domain as well as to optimally mitigate the risk of fracture due to a crack at its worst-case location by sequentially inserting and optimizing the configurations of circular/elliptical stiff/soft inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Arora J (1993) An exposition of the material derivative approach for structural shape sensitivity analysis. Comput Methods Appl Mech Eng 105(1):41

    Article  MathSciNet  MATH  Google Scholar 

  • Arora J, Cardoso J (1992) Variational principle for shape design sensitivity analysis. AIAA J 30:2

    Article  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197. https://doi.org/10.1016/0045-7825(88)90086-2

    Article  MathSciNet  MATH  Google Scholar 

  • Bennett M, Botkin GMCR (1986) Laboratories, The optimum shape: automated structural design. Plenum Press, New York

    Book  Google Scholar 

  • Budiansky B, O’Connell R (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12:81

    Article  MATH  Google Scholar 

  • Budiansky B, Rice J (1973) Conservation laws and energy-release rates. J Appl Mech 40:201

    Article  MATH  Google Scholar 

  • Cea J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188:713

    Article  MathSciNet  MATH  Google Scholar 

  • Chang J, Chien A (2002) Evaluation of M-integral for anisotropic elastic media with multiple defects. Int J Fract 114:267

    Article  Google Scholar 

  • Chen YH (2001) Ballistic-diffusive heat-conduction equations. Int J Solids Struct 38:3193

    Article  Google Scholar 

  • Chen CP, Chen Y, Subbarayan G (2021) Singular enrichment for multi-material corners with application to assessing the risk of fracture in semiconductor devices. Eng Fract Mech 248:107739. https://doi.org/10.1016/j.engfracmech.2021.107739

    Article  Google Scholar 

  • Da D, Qian X (2020) Fracture resistance design through biomimicry and topology optimization. Extreme Mech Lett 40:100890. https://doi.org/10.1016/j.eml.2020.100890

    Article  Google Scholar 

  • Dems K, Mroz Z (1983) Variational approach by means of adjoint systems to structural optimization and sensitivity analysis-I: variation of material parameters within fixed domain. Int J Solids Struct 19:677

    Article  MathSciNet  MATH  Google Scholar 

  • Dems K, Mroz Z (1984) Variational approach by means of adjoint systems to structural optimization and sensitivity analysis-II: structure shape variation. Int J Solids Struct 20:527

    Article  MathSciNet  MATH  Google Scholar 

  • Dems K, Mróz Z (1986) On a class of conservation rules associated with sensitivity analysis in linear elasticity. Int J Solids Struct 22(7):737

    Article  MATH  Google Scholar 

  • Eschenauer H, Kobelev V, Schumacher A (1974) Bubble method for topology and shape optimization of structures. Struct Optim 8:42

    Article  Google Scholar 

  • Eshelby J (1956) The continuum theory of lattice defects. Solid State Phys 3:79

    Article  Google Scholar 

  • Freund L (1978) Stress intensity factor calculations based on a conservation integral. Int J Solids Struct 14(1):241

    Article  Google Scholar 

  • Haug V, E.J. and Choi, K.K. and Komkov, (1986) Design sensitivity analysis of structural systems. Design sensitivity analysis of structural systems. Academic Press, Orlando

  • He M, Hutchinson J (1981) The penny-shaped crack and the plane strain crack in an infinite body of power-law material. J Appl Mech 48:830

    Article  MATH  Google Scholar 

  • Herrmann A, Herrmann G (1981) On energy-release rates for a plane crack. J Appl Mech 48:525

    Article  MATH  Google Scholar 

  • Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135

  • Irwin G (1957) Relation of stresses near a crack to the crack extension force. In 9th international congress on applied mechanics (University of Brussels), pp. 245–251

  • Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361

    Article  Google Scholar 

  • Knowles J, Sternberg E (1972) On a class of conservation laws in linearized and finite elastostatics. Arch Ration Mech Anal 44:187–211

  • Lin HY, Subbarayan G (2013) Optimal topological design through insertion and configuration of finite-sized heterogeneities. Int J Solids Struct 50(2):429

    Article  Google Scholar 

  • Luo Y, Subbarayan G (2007) A study of multiple singularities in multi-material wedges and their use in analysis of microelectronic interconnect structures. Eng Fract Mech 74(3):416

    Article  Google Scholar 

  • Natekar D, Zhang X, Subbarayan G (2004) Constructive solid analysis: a hierarchical, geometry-based meshless analysis procedure for integrated design and analysis. Comput Aid Des 36(5):473

    Article  Google Scholar 

  • Park J, Earmme Y (1986) Application of conservation integrals to interfacial crack problems. Mech Mater 5(3):261

    Article  Google Scholar 

  • Pironneau O (1984) Optimal shape design for elliptic systems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Renken F, Subbarayan G (2000) NURBS-based solutions to inverse boundary problems in droplet shape prediction. Comput Methods Appl Mech Eng 190(11–12):1391

    Article  MATH  Google Scholar 

  • Rice J (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379

  • Russ JB, Waisman H (2019) Topology optimization for brittle fracture resistance. Comput Methods Appl Mech Eng 347:238. https://doi.org/10.1016/j.cma.2018.12.031

    Article  MathSciNet  MATH  Google Scholar 

  • Russ JB, Waisman H (2020) A novel topology optimization formulation for enhancing fracture resistance with a single quasi-brittle material. Int J Numer Methods Eng 121(13):2827. https://doi.org/10.1002/nme.6334

    Article  MathSciNet  Google Scholar 

  • Seweryn A, Molski K (1996) Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions. Eng Fract Mech 55(4):529

    Article  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolowski J, Zolesio J (1992) Introduction to shape optimization: shape sensitivity analysis. Springer series in computational mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Subbarayan G (1991) Bone construction and reconstruction: A variational model and its applications. Ph.D. thesis, Cornell University, Ithaca, NY

  • Tambat A, Subbarayan G (2012) Isogeometric enriched field approximations. Comput Methods Appl Mech Eng 245–246:1

    Article  MATH  Google Scholar 

  • Xia L, Da D, Yvonnet J (2018) Topology optimization for maximizing the fracture resistance of quasi-brittle composites. Comput Methods Appl Mech Eng 332:234. https://doi.org/10.1016/j.cma.2017.12.021

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Subbarayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1 The Divergence of Generalized Eshelby Energy-Momentum Tensor

We derive below the general form of the divergence \(\nabla \cdot \varvec{\Sigma }\) and show that the result reduces to \(\nabla \cdot \varvec{\Sigma }=0\) if \(\mathbf {C}\) and \(\mathbf {b}\) are homogeneous in their domains.

$$\begin{aligned} \begin{aligned} \nabla \cdot \varvec{\Sigma }&= \nabla \cdot \left[ \left( \psi - \varvec{\sigma }:\varvec{\varepsilon }^{a} + \mathbf {b}\cdot \mathbf {u}^{a} \right) \mathbf {I} + \varvec{\sigma }\cdot {\nabla \mathbf {u}^{a}}^{T} + \varvec{\sigma }^{a} \cdot \nabla \mathbf {u}^{T} \right] \\&= \nabla \psi - \nabla (\varvec{\sigma }:\varvec{\varepsilon }^{a}) + \nabla (\mathbf {b}\cdot \mathbf {u}^{a}) + \nabla \cdot (\varvec{\sigma }\cdot {\nabla \mathbf {u}^{a}}^{T}) + \nabla \cdot (\varvec{\sigma }^{a} \cdot \nabla \mathbf {u}^{T}) \\&= \nabla \psi - \nabla (\varvec{\sigma }:\varvec{\varepsilon }^{a}) + \nabla (\mathbf {b}\cdot \mathbf {u}^{a}) + (\nabla \cdot \varvec{\sigma }) \cdot ({\nabla \mathbf {u}^{a}}^{T}) + \varvec{\sigma }:\nabla ({\nabla \mathbf {u}^{a}}^{T}) + (\nabla \cdot \varvec{\sigma }^{a}) \cdot (\nabla \mathbf {u}^{T}) + \varvec{\sigma }^{a}:\nabla (\nabla \mathbf {u}^{T}) \\&= \nabla \psi - \nabla \varvec{\sigma }: \varvec{\varepsilon }^{a} - \varvec{\sigma }:\nabla \varvec{\varepsilon }^{a} + \nabla \mathbf {b}\cdot \mathbf {u}^{a} + \mathbf {b}\cdot ({\nabla \mathbf {u}^{a}}^{T}) - \mathbf {b}\cdot ({\nabla \mathbf {u}^{a}}^{T}) + \varvec{\sigma }:\nabla \varvec{\varepsilon }^{a} - \mathbf {b}^{a} \cdot (\nabla \mathbf {u}^{T}) + \varvec{\sigma }^{a}:\nabla \varvec{\varepsilon }\\&= \nabla \psi - \nabla \varvec{\sigma }: \varvec{\varepsilon }^{a} + \nabla \mathbf {b}\cdot \mathbf {u}^{a} - \mathbf {b}^{a} \cdot (\nabla \mathbf {u}^{T}) + \varvec{\sigma }^{a}:\nabla \varvec{\varepsilon }\\&= \frac{\partial {\psi }}{\partial {\mathbf {u}}} \cdot \nabla \mathbf {u}^{T} + \frac{\partial {\psi }}{\partial {\varvec{\varepsilon }}} : \nabla \varvec{\varepsilon }- \nabla \varvec{\sigma }:\varvec{\varepsilon }^{a} + \nabla \mathbf {b}\cdot \mathbf {u}^{a} - \frac{\partial {\psi }}{\partial {\mathbf {u}}} \cdot (\nabla \mathbf {u}^{T}) + (\mathbf {C}:\varvec{\varepsilon }^{a} - \frac{\partial {\psi }}{\partial {\varvec{\varepsilon }}}):\nabla \varvec{\varepsilon }\\&= - \varvec{\varepsilon }: \nabla \mathbf {C}: \varvec{\varepsilon }^{a} + \nabla \mathbf {b}\cdot \mathbf {u}^{a} \end{aligned} \end{aligned}$$
(64)

1.2 A.2 Simplification for Rotational Transformation

Rotation is described by \( \mathbf {v}=\mathbf {W}\mathbf {x}= \mathbf {w}\times \mathbf {x}\) and \( \nabla \mathbf {v}= \mathbf {W}^{T} \) in \(\Omega _s\).

$$\begin{aligned} \begin{aligned}&\int _{\Omega _{s}} \varvec{\Sigma }: \nabla \mathbf {v} \; d\Omega = \int _{\Omega _{s}} \left( \psi - \varvec{\sigma }:\varvec{\varepsilon }^{a} + \mathbf {b}\cdot \mathbf {u}^{a} \right) \mathbf {I}:\mathbf {W}^{T} \; d\Omega \\&+ \int _{\Omega _{s}} \left( \varvec{\sigma }\cdot {\nabla \mathbf {u}^{a}}^{T} \right) : \mathbf {W}^{T} \; d\Omega + \int _{\Omega _{s}} \left( \varvec{\sigma }^{a} \cdot \nabla \mathbf {u}^{T} \right) : \mathbf {W}^{T} \; d\Omega \\&= \int _{\Omega _{s}} \left( \varvec{\sigma }\cdot {\nabla \mathbf {u}^{a}}^{T} + \varvec{\sigma }^{T} \cdot \nabla \mathbf {u}^{a} \right) : \mathbf {W}^{T} \; d\Omega \\&+ \int _{\Omega _{s}} \left( \varvec{\sigma }^{a} \cdot \nabla \mathbf {u}^{T} + {\varvec{\sigma }^{a}}^{T} \cdot \nabla \mathbf {u}\right) : \mathbf {W}^{T} \; d\Omega \\&+ \int _{\Omega _{s}} \left[ \left( \nabla \cdot \varvec{\sigma }\right) \mathbf {u}^{a} - \nabla \cdot \left( \varvec{\sigma }\mathbf {u}^{a} \right) \right] : \mathbf {W}^{T} \; d\Omega \\&+ \int _{\Omega _{s}} \left[ \left( \nabla \cdot \varvec{\sigma }^{a} \right) \mathbf {u}- \nabla \cdot \left( \varvec{\sigma }^{a} \mathbf {u}\right) \right] : \mathbf {W}^{T} \; d\Omega \\&= \int _{\Omega _{s}} \left( \varvec{\sigma }\cdot \varvec{\varepsilon }^{a} + \varvec{\sigma }^{a} \cdot \varvec{\varepsilon }\right) : \mathbf {W}^{T} \; d\Omega \\ {}&- \int _{\Gamma _{s}} \left( \mathbf {t}\mathbf {u}^{a} + \mathbf {t}^{a} \mathbf {u}\right) : \mathbf {W}^{T} \; d\Gamma - \int _{\Omega _{s}} \left( \mathbf {b}\mathbf {u}^{a} + \mathbf {b}^{a} \mathbf {u}\right) : \mathbf {W}^{T} \; d\Omega \end{aligned} \end{aligned}$$
(65)

1.3 A.3 Simplification for Scaling Transformation

Scaling results when \( \mathbf {v}= \alpha \mathbf {x}\) and \( \nabla \mathbf {v}= \alpha \mathbf {I} \) in \(\Omega _s\), where \(\alpha \) is an expansion parameter.

$$\begin{aligned} \begin{aligned}&\int _{\Omega _{s}} \varvec{\Sigma }: \nabla \mathbf {v} \; d\Omega = \int _{\Omega _{s}} \left[ \left( \psi - \varvec{\sigma }:\varvec{\varepsilon }^{a}\right. \right. \\&\left. \left. + \mathbf {b}\cdot \mathbf {u}^{a} \right) \mathbf {I} + \varvec{\sigma }\cdot {\nabla \mathbf {u}^{a}}^{T} + \varvec{\sigma }^{a} \cdot \nabla \mathbf {u}^{T} \right] :\alpha \mathbf {I} \; d\Omega \\&= \alpha \left[ d_m\int _{\Omega _{s}} \psi \; d\Omega - d_m\int _{\Omega _{s}} \left( \varvec{\sigma }:\varvec{\varepsilon }^{a} - \mathbf {b}\cdot \mathbf {u}^{a} \right) \; d\Omega \right. \\&\left. + \int _{\Omega _{s}} \varvec{\sigma }:\varvec{\varepsilon }^{a} \; d\Omega + \int _{\Omega _{s}} \varvec{\sigma }^{a}:\varvec{\varepsilon } \; d\Omega \right] \\&= \alpha \left[ d_m\int _{\Omega _{s}} \psi \; d\Omega - d_m\int _{\Gamma _{s}} \mathbf {t}\cdot \mathbf {u}^{a} \; d\Gamma \right. \\&\left. + \int _{\Gamma _{s}} \left( \mathbf {t}\cdot \mathbf {u}^{a} + \mathbf {t}^{a} \cdot \mathbf {u}\right) \; d\Gamma + \int _{\Omega _{s}} \left( \mathbf {b}\cdot \mathbf {u}^{a} + \mathbf {b}^{a} \cdot \mathbf {u}\right) \; d\Omega \right] \end{aligned} \end{aligned}$$
(66)

where, \(d_m\) is the problem dimension (2 or 3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CS., Chen, CP., Lin, HY. et al. Conservation laws for arbitrary objectives with application to fracture resistant design. Int J Fract 238, 35–56 (2022). https://doi.org/10.1007/s10704-022-00649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-022-00649-9

Keywords

Navigation