Skip to main content
Log in

In-situ dwell-fatigue fracture experiment and CPFE simulation of SLM AlSi10Mg alloy at high temperature

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The creep-fatigue fracture behavior of selective laser melting (SLM) AlSi10Mg alloy was studied by conducting in-situ scanning electron microscopy experiments at 500 °C. Dwell times of 0, 60 and 120 s were introduced to the tensile-tensile fatigue. The experimental results indicated that the lifetime decreased with lengthening of the dwell time from 0 to 120 s, which closely related to the deformation response behavior of the material. The process of the fracture evolution of the alloy was characterized and analyzed using in-situ scanning electron microscopy images and the fracture morphology. The creep-fatigue fracture mechanism of SLM AlSi10Mg alloy was revealed. Finally, combined with crystal plasticity finite element simulation, the Mises stress, plastic strain and elastic stored energy were used to explain the crack nucleation of SLM AlSi10Mg alloy under fatigue and dwell-fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1:77–86

    Google Scholar 

  • Anand L, Kothari M (1996) A computational procedure for rate-independent crystal plasticity. J Mech Phys Solids 44(4):525–558

    Article  MathSciNet  MATH  Google Scholar 

  • Arsenlis A, Parks D (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47(5):1597–1611

    Article  Google Scholar 

  • Asaro RJ (1983) Micromechanics of crystals and polycrystals. Adv Appl Mech 23:1–115

    Article  Google Scholar 

  • Bao J, Wu S, Withers PJ, Wu Z, Li F, Fu Y, Sun W (2020) Defect evolution during high temperature tension-tension fatigue of SLM AISi10Mg alloy by synchrotron tomography. Mater Sci Eng A 792:139809

    Article  Google Scholar 

  • Bao J, Wu Z, Wu S, Withers PJ, Li F, Ahmed S, Benaarbia A, Sun W (2021) Hot dwell-fatigue behaviour of additively manufactured AlSi10Mg alloy: relaxation, cyclic softening and fracture mechanisms. Int J Fatigue 151:106408

    Article  Google Scholar 

  • Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169

    Article  Google Scholar 

  • Busso E, Meissonnier F, O’dowd N, (2000) Gradient-dependent deformation of two-phase single crystals. J Mech Phys Solids 48(11):2333–2361

    Article  MATH  Google Scholar 

  • Chen X, Yang Z, Sokolov MA, Erdman DL III, Mo K, Stubbins JF (2013) Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850° C. Mater Sci Eng A 563:152–162

    Article  Google Scholar 

  • Chen B, Jiang J, Dunne FP (2018) Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? Int J Plast 101:213–229

    Article  Google Scholar 

  • Cottrell AH (1953) Dislocations and plastic flow in crystals.

  • Ding B, Ren W, Peng J, Zhong Y, Li F, Yu J, Ren Z (2018) Revealing the creep-fatigue deformation mechanism for a directionally-solidified Ni-based superalloy DZ445 at 900° C. Materials Research Express 5(7):076513

    Article  Google Scholar 

  • Dunne F, Rugg D, Walker A (2007a) Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: application to cold-dwell-fatigue in Ti alloys. Int J Plast 23(6):1061–1083

    Article  MATH  Google Scholar 

  • Dunne F, Wilkinson A, Allen R (2007b) Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal. Int J Plast 23(2):273–295

    Article  MATH  Google Scholar 

  • Dunne F, Kiwanuka R, Wilkinson A (2012a) Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density. Proc R Soc A 468(2145):2509–2531

    Article  Google Scholar 

  • Dunne F, Kiwanuka R, Wilkinson A (2012b) Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density. Proc R Soc A 468(2145):2509–2531

    Article  Google Scholar 

  • Dunne F, Kiwanuka R, Wilkinson A (2012c) Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density. In: Proceedings of Royal Society A, vol 2145, pp 2509–2531. The Royal Society

  • Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des 1980–2015(56):862–871

    Article  Google Scholar 

  • Everaerts J, Gontcharov D, Verlinden B, Wevers M (2017) The influence of load holds on the fatigue behaviour of drawn Ti-6Al-4V wires. Int J Fatigue 98:203–211

    Article  Google Scholar 

  • Gibbs G (1969) Thermodynamic analysis of dislocation glide controlled by dispersed local obstacles. Mater Sci Eng 4(6):313–328

    Article  Google Scholar 

  • Granato A, Lücke K, Schlipf J, Teutonico L (1964) Entropy factors for thermally activated unpinning of dislocations. J Appl Phys 35(9):2732–2745

    Article  Google Scholar 

  • Han C-S, Gao H, Huang Y, Nix WD (2005) Mechanism-based strain gradient crystal plasticity—I. Theory. J Mech Phys Solids 53(5):1188–1203

    Article  MathSciNet  MATH  Google Scholar 

  • Hu D, Ma Q, Shang L, Gao Y, Wang R (2016) Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 C and probabilistic creep-fatigue modeling. Mater Sci Eng A 670:17–25

    Article  Google Scholar 

  • Jiang J, Yang J, Zhang T, Zou J, Wang Y, Dunne F, Britton T (2016) Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel-based superalloys. Acta Mater 117:333–344

    Article  Google Scholar 

  • Kanvinde A, Deierlein G (2007) Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue. J Eng Mech 133(6):701–712

    Article  Google Scholar 

  • Korsunsky AM, Dini D, Dunne FP, Walsh MJ (2007) Comparative assessment of dissipated energy and other fatigue criteria. Int J Fatigue 29(9–11):1990–1995

    Article  MATH  Google Scholar 

  • Kundu T (2012) Ultrasonic and electromagnetic NDE for structure and material characterization: engineering and biomedical applications. CRC Press

    Google Scholar 

  • Kysar J, Saito Y, Oztop M, Lee D, Huh W (2010) Experimental lower bounds on geometrically necessary dislocation density. Int J Plast 26(8):1097–1123

    Article  MATH  Google Scholar 

  • Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36(1):1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Li P, Kim Y, Bobel A, Hector L Jr, Sachdev A, Kumar S, Bower A (2021) Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg. Acta Mater 220:117346

    Article  Google Scholar 

  • Liu A, Chua CK, Leong KF (2010) Properties of test coupons fabricated by selective laser melting. Key Engineering Materials. Trans Tech Publ, pp 780–784

    Google Scholar 

  • Maamoun AH, Elbestawi M, Dosbaeva GK, Veldhuis SC (2018) Thermal post-processing of AlSi10Mg parts produced by selective laser melting using recycled powder. Addit Manuf 21:234–247

    Google Scholar 

  • Manonukul A, Dunne F (2004) High–and low–cycle fatigue crack initiation using polycrystal plasticity. In: Proceedings of the Royal Society of London A, vol 2047, pp 1881–1903. The Royal Society

  • McGinty R, McDowell D (2006) A semi-implicit integration scheme for rate independent finite crystal plasticity. Int J Plast 22(6):996–1025

    Article  MATH  Google Scholar 

  • Michi RA, Plotkowski A, Shyam A, Dehoff RR, Babu SS (2021) Towards high-temperature applications of aluminium alloys enabled by additive manufacturing. Int Mater Rev 1–48

  • Paoletti C, Cerri E, Ghio E, Santecchia E, Cabibbo M, Spigarelli S (2021) Effect of low-temperature annealing on creep properties of AlSi10Mg alloy produced by additive manufacturing: experiments and modeling. Metals 11(2):179

    Article  Google Scholar 

  • Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des 1980–2015(65):417–424

    Article  Google Scholar 

  • Schneller W, Leitner M, Springer S, Grün F, Taschauer M (2019) Effect of HIP treatment on microstructure and fatigue strength of selectively laser melted AlSi10Mg. J Manuf Mater Process 3(1):16

    Google Scholar 

  • Suresh S (1998) Fatigue of materials. Cambridge University Press

    Book  Google Scholar 

  • Tang M, Pistorius PC (2017) Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int J Fatigue 94:192–201

    Article  Google Scholar 

  • Tang M, Pistorius PC (2019) Fatigue life prediction for AlSi10Mg components produced by selective laser melting. Int J Fatigue 125:479–490

    Article  Google Scholar 

  • Taylor GI (1934) The mechanism of plastic deformation of crystals. Part I. Theoretical Proc R Soc Lond A 145(855):362–387

    Article  MATH  Google Scholar 

  • Uzan NE, Shneck R, Yeheskel O, Frage N (2018) High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM). Addit Manuf 24:257–263

    Google Scholar 

  • Wan V, MacLachlan D, Dunne F (2014) A stored energy criterion for fatigue crack nucleation in polycrystals. Int J Fatigue 68:90–102

    Article  Google Scholar 

  • Wang Z, Wu W, Qian G, Sun L, Li X, Correia JA (2019) In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature. Eng Fract Mech 214:149–163

    Article  Google Scholar 

  • Wang Z, Wu W, Liang J, Li X (2020) Creep-fatigue interaction behavior of nickel-based single crystal superalloy at high temperature by in-situ SEM observation. Int J Fatigue 141:105879

    Article  Google Scholar 

  • Wilson D, Zheng Z, Dunne FP (2018) A microstructure-sensitive driving force for crack growth. J Mech Phys Solids 121:147–174

    Article  Google Scholar 

  • Wu H, Li J, Wei Z, Wei P (2020) Effect of processing parameters on forming defects during selective laser melting of AlSi10Mg powder. Rapid Prototyp J

  • Xu Z, Liu A, Wang X (2021) Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions. Mater Sci Eng A 812:141141

    Article  Google Scholar 

  • Yan Q, Song B, Shi Y (2020) Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J Mater Sci Technol 41:199–208

    Article  Google Scholar 

  • Zhang T, Collins DM, Dunne FP, Shollock BA (2014) Crystal plasticity and high-resolution electron backscatter diffraction analysis of full-field polycrystal Ni superalloy strains and rotations under thermal loading. Acta Mater 80:25–38

    Article  Google Scholar 

  • Zhang C, Zhu H, Liao H, Cheng Y, Hu Z, Zeng X (2018) Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg. Int J Fatigue 116:513–522

    Article  Google Scholar 

  • Zhao L, Macías JGS, Ding L, Idrissi H, Simar A (2019) Damage mechanisms in selective laser melted AlSi10Mg under as built and different post-treatment conditions. Mater Sci Eng A 764:138210

    Article  Google Scholar 

  • Zheng Z, Balint DS, Dunne FP (2016) Dwell-fatigue in two Ti alloys: an integrated crystal plasticity and discrete dislocation study. J Mech Phys Solids 96:411–427

    Article  Google Scholar 

  • Zrnı́k J, Semeňák J, Vrchovinský V, Wangyao P (2001) Influence of hold period on creep-fatigue deformation behaviour of nickel base superalloy. Mater Sci Eng A 319:637–642

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Numbers 11632010, 11872035 and 12172190).

Funding

Funding was provided by National Natural Science Foundation of China (Grant Numbers 11632010, 11872035, 12172190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xide Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhao, C., Wang, J. et al. In-situ dwell-fatigue fracture experiment and CPFE simulation of SLM AlSi10Mg alloy at high temperature. Int J Fract 235, 159–178 (2022). https://doi.org/10.1007/s10704-022-00647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-022-00647-x

Keywords

Navigation