Skip to main content
Log in

3D XFEM investigation of the plasticity effect on fatigue propagation under thermo-mechanical loading

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The aim of this paper is to propose a computation strategy for fatigue propagation simulation of a crack by taking into account the plasticity. Feulvarch et al. (Comput Methods Appl Mech Eng 361: 112805, 2020) recently proposed a first XFEM formulation capable of overcoming the volumetric locking phenomenon due to plastic incompressibility in 3D. This formulation is here applied to quadratic elements for the mode I propagation of a crack in a valve structure submitted to cyclic thermo-mechanical loading. A simulation strategy is proposed where it is not necessary to compute all the cycles and thus the complete plastic history. This is of great interest because it avoids the treatment of the possible closing of the crack and uses the conventional J-integral. The application reveals the interest of taking plasticity into account for the propagation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agathos K, Bordas SPA, Chatzia E (2019) Improving the conditioning of XFEM/GFEM for fracture mechanics problems through enrichment quasi-orthogonalization. Comput Methods Appl Mech Eng 346:1051–1073

    Article  Google Scholar 

  • Babuška I (1973) The finite element method with Lagrangien multipliers. Numer Math 20:179–192

    Article  Google Scholar 

  • Bordas S, Moran B (2006) Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng Fract Mech 73(9):1176–1201

    Article  Google Scholar 

  • Bordas S, Rabczuk T, Zi G (2008) Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Eng Fract Mech 75:943–960

    Article  Google Scholar 

  • Brezis H (2011) Functional analysis. Sobolev spaces and partial differential equations. Springer, New York

    Book  Google Scholar 

  • Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO. Anal Numer R2:129–151

    Google Scholar 

  • Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259

    Article  Google Scholar 

  • Dierckx P (1993) Curve and Surface Fitting with Splines. Oxford University Press, Oxford

    Google Scholar 

  • Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for XFEM simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 195:501–515

    Article  Google Scholar 

  • Elguedj T, Gravouil A, Maigre H (2009) An explicit dynamics extended finite element method. Part 1: mass lumping for arbitrary enrichment functions. Comput Methods Appl Mech Eng 198:2297–2317

    Article  Google Scholar 

  • Eshelby JD (1970) Energy relations and the energy-momentum tensor in continuum mechanics. In: Kanninen MF, Adler WF, Roseneld AR, Jaee RI (eds) Inelastic behavior of solids. McGraw Hill, New York

    Google Scholar 

  • ESI Group (2020) Users Manual

  • Feulvarch E, Fontaine M, Bergheau J-M (2013) XFEM investigation of a crack path in residual stresses resulting from quenching. Finite Elem Anal Des 75:62–70

    Article  Google Scholar 

  • Feulvarch E, Roux J-C, Bergheau J-M, Gilles P (2017) A stable P1/P1 finite element for finite strain von Mises elasto-plasticity. Comput Methods Appl Mech Eng 324:537–545

    Article  Google Scholar 

  • Feulvarch E, Lacroix R, Deschanels H (2020) A 3D locking-free XFEM formulation for the von Mises elasto-plastic analysis of cracks. Comput Methods Appl Mech Eng 361:112805

    Article  Google Scholar 

  • Fischer FD, Simha NK, Predan J, Schongrundner R, Kolednik O (2012) On configurational forces at boundaries in fracture mechanics. Int J Fract 174:61–74

    Article  Google Scholar 

  • Jin Y, Gonzlez-Estrada O, Pierard O, Bordas SPA (2017) Error-controlled adaptive extended finite element method for 3d linear elastic crack propagation. Comput Methods Appl Mech Eng 318:319–348

    Article  Google Scholar 

  • Kolednik O, Schongrundner R, Fischer FD (2014) A new view on J-integrals in elastic-plastic materials. Int J Fract 187:77–107

    Article  Google Scholar 

  • Kumar S, Singh IV, Mishra BK (2014) XFEM simulation of stable crack growth using J-R curve under finite strain plasticity. Int J Mech Mater Des 10:165–177

    Article  Google Scholar 

  • Kumar S, Singh IV, Mishra BK, Sharma K, Khan IA (2019) A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects. Eng Fract Mech 205:577–602

    Article  Google Scholar 

  • Legrain G, Moes N, Huerta A (2008) Stability of incompressible formulations enriched with XFEM. Comput Methods Appl Mech Eng 197:1835–1849

    Article  Google Scholar 

  • Loehnert S, Mueller-Hoeppe DS, Wriggers P (2011) 3D corrected XFEM approach and extension to finite deformation theory. Int. J Numer Methods Eng 86(4–5):431–452

    Article  Google Scholar 

  • Menk A, Bordas SPA (2010) Numerically determined enrichment functions for the extendednite element method and applications to bi-material anisotropicfracture and polycrystals. Int J Numer Meth Eng 83:805–828

    Google Scholar 

  • Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Method Eng 46:131–150

    Article  Google Scholar 

  • Moes N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets-Part I: mechanical model. Int J Numer Methods Eng 53(11):2549–2568

    Article  Google Scholar 

  • Ochensberger W, Kolednik O (2014) A new basis for the application of the J-integral for cyclically loaded cracks in elastic-plastic materials. Int J Fract 189:77–101

    Article  CAS  Google Scholar 

  • Ochensberger W, Kolednik O (2015) Physically appropriate characterization of fatigue crack propagation rate in elastic-plastic materials using the J-integral concept. Int J Fract 192:25–45

    Article  Google Scholar 

  • Pandey VB, Singha IV, Mishra BK, Ahmad S, Venugopal RA, Kumar V (2019) A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth simulations. Eng Fract Mech 206:172–200

    Article  Google Scholar 

  • Penga X, Atroshchenkob E, Kerfridena P, Bordas SPA (2017) Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth. Comput Methods Appl Mech Eng 316:151–185

    Article  Google Scholar 

  • Rajaram H, Socrate S, Parks DM (2000) Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors. Eng Fract Mech 66:455–482

    Article  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35(2):379–386

    Article  Google Scholar 

  • Sadeghirad A, Chopp D, Ren X, Fang E, Lua J (2016) A novel hybrid approach for level set characterization and tracking of non-planar 3d cracks in the extended finite element method. Eng Fract Mech 160:1–14

    Article  Google Scholar 

  • Shanga HY, Machadob RD, Filho JEA (2019) On the performance of GFEM with trigonometric enrichment in bidimensional dynamic elastoplastic modelling. Eur J Mech 73:512–527

    Article  Google Scholar 

  • Simha NK, Fischer FD, Shan GX, Chen CR, Kolednik O (2008) J-integral and crack driving force in elastic-plastic materials. J Mech Phys Solids 56:2876–2895

  • Stapor P (2012) Application of XFEM with shifted-basis approximation to computation of stress intensity factors. Arch Mech Eng 58(4):447–483. https://doi.org/10.2478/v10180-011-0028-0

    Article  Google Scholar 

  • Stazi FL, Budyn E, Chessa J, Belytschko T (2003) An extended finite element method with higher-order elements for curved cracks. Comput Mech 31:38–48. https://doi.org/10.1007/s00466-002-0391-2

    Article  Google Scholar 

  • Sukumar N, Moes N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48:1549–1570

    Article  Google Scholar 

  • Sutula D, Kerfriden P, van Dam T, Bordas SPA (2018) Minimum energy multiple crack propagation. Part II: discrete Solution with XFEM. Eng Fract Mech 191:225–256

    Article  Google Scholar 

  • Tumbajoy-Spinel DY, Feulvarch E, Bergheau JM, Kermouche G (2013) 2D axisymmetric X-FEM modeling of the Hertzian cone crack system. Comptes Rendus Mecanique 341(9–10):715–725

    Article  Google Scholar 

  • Westergaard HM (1939) Bearing pressures and cracks. J Appl Mech 6:49–53

    Article  Google Scholar 

  • Zi G, Belytschko T (2003) New crack-tip elements for xfem and applications to cohesive cracks. Int J Numer Methods Eng 57(15):2221–2240

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Feulvarch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feulvarch, E., Lacroix, R., Madou, K. et al. 3D XFEM investigation of the plasticity effect on fatigue propagation under thermo-mechanical loading. Int J Fract 230, 33–41 (2021). https://doi.org/10.1007/s10704-021-00516-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-021-00516-z

Keywords

Navigation