An interphase approach of size effects in ductile porous materials

Abstract

The aim of this paper is to develop a size-dependent Gurson type model. The approach is based on a micromechanical implementation of a local isotropic hardening able to account for different mechanisms responsible for size effects arising at the nanoscale (surface stress effects) and at the micronscale (strain gradient effects). The heterogeneity of hardening is accounted for by considering a finite number of spherical layers (Leblond et al. in Eur J Mech A 14:499–527, 1995; Morin et al. in Int J Solids Struct 118:167–178, 2017) in which hardening is described by a Taylor dislocation model. This introduces some strain gradient effect inducing a void size dependence. In the limit of a thin interphase, the model is shown to be very close to the imperfect coherent interface based model of Dormieux and Kondo (Int J Eng Sci 48:575–581, 2010) for nanoporous materials. In the case of micronscale voids, the model is assessed through comparison of its predictions with finite element cell calculations for different stress triaxiality. A good agreement is observed between the model predictions and numerical data from cell calculations performed by Niordson (Eur J Mech A 27:222–233, 2008).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106:326–330

    CAS  Article  Google Scholar 

  2. Benzerga AA, Besson J (2001) Plastic potentials for anisotropic porous solids. Eur J Mech A 20:397–434

    Article  Google Scholar 

  3. Benzerga AA, Leblond JB (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44:169–305

    Article  Google Scholar 

  4. Benzerga AA, Leblond JB (2014) Effective yield criterion accounting for microvoid coalescence. J Appl Mech 81:031009

    Article  Google Scholar 

  5. Benzerga AA, Leblond JB, Needleman A, Tvergaard V (2016) Ductile failure modeling. Int J Fract 201:29–80

    Article  Google Scholar 

  6. Brach S, Dormieux L, Kondo D, Vairo G (2016) A computational insight into void-size effects on strength properties of nanoporous materials. Mech Mater 101:102–117

    Article  Google Scholar 

  7. Brach S, Dormieux L, Kondo D, Vairo G (2017) Nanoporous materials with a general isotropic plastic matrix: exact limit state under isotropic loadings. Int J Plast 89:1–28

    CAS  Article  Google Scholar 

  8. Brach S, Anoukou K, Kondo D, Vairo G (2018) Limit analysis and homogenization of nanoporous materials with a general isotropic plastic matrix. Int J Plast 105:24–61

    Article  Google Scholar 

  9. Dormieux L, Kondo D (2010) An extension of Gurson model incorporating interface stresses effects. Int J Eng Sci 48:575–581

    Article  Google Scholar 

  10. Espinosa HD, Prorok BC, Peng B (2004) Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J Mech Phys Solids 52:667–689

    CAS  Article  Google Scholar 

  11. Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41:1825–1857

    Article  Google Scholar 

  12. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361

    Article  Google Scholar 

  13. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271

    Article  Google Scholar 

  14. Fleck NA, Willis JR (2009) A mathematical basis for strain-gradient plasticity theory-Part I: scalar plastic multiplier. J Mech Phys Solids 57:161–177

    Article  Google Scholar 

  15. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    CAS  Article  Google Scholar 

  16. Gao H, Huang Y (2001) Taylor-based nonlocal theory of plasticity. Int J Solids Struct 38:2615–2637

    Article  Google Scholar 

  17. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity-I. Theory. J Mech Phys Solids 47:1239–1263

    Article  Google Scholar 

  18. Gologanu M, Leblond JB, Devaux J (1993) Approximate models for ductile metals containing non-spherical voids-case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754

    Article  Google Scholar 

  19. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile media. ASME J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  20. Holte I, Niordson CF, Nielsen KL, Tvergaard V (2019) Investigation of a gradient enriched Gurson–Tvergaard model for porous strain hardening materials. Eur J Mech A 75:472–484

    Article  Google Scholar 

  21. Huang Y, Gao H, Nix WD, Hutchinson JW (2000) Mechanism-based strain gradient plasticity-II. Analysis. J Mech Phys Solids 48:99–128

    Article  Google Scholar 

  22. Huang Y, Qu S, Hwang KC, Li M, Gao H (2004) A conventional theory of mechanism-based strain gradient plasticity. Int J Plast 20:753–782

    Article  Google Scholar 

  23. Hure J, Barrioz PO, Tanguy B (2020) Assessing size effects on the deformation of nanovoids in metallic materials. Scr Mater 177:54–57

    CAS  Article  Google Scholar 

  24. Hutchinson JW (2000) Plasticity at the micron scale. Int J Solids Struct 37:225–238

    Article  Google Scholar 

  25. Keralavarma S, Benzerga A (2010) A constitutive model for plastically anisotropic solids with non-spherical voids. J Mech Phys Solids 58:874–901

    Article  Google Scholar 

  26. Lacroix R, Leblond JB, Perrin G (2016) Numerical study and theoretical modelling of void growth in porous ductile materials subjected to cyclic loadings. Eur J Mech A 55:100–109

    Article  Google Scholar 

  27. Leblond J, Perrin G, Devaux J (1995) An improved Gurson-type model for hardenable ductile metals. Eur J Mech A 14:499–527

    Google Scholar 

  28. Leblond JB, Kondo D, Morin L, Remmal A (2018) Classical and sequential limit analysis revisited. Comptes Rendus Mécanique 346:336–349

    Article  Google Scholar 

  29. Ling C, Forest S, Besson J, Tanguy B, Latourte F (2018) A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals. Int J Solids Struct 134:43–69

    Article  Google Scholar 

  30. Liu D, He Y, Dunstan DJ, Zhang B, Gan Z, Hu P, Ding H (2013) Toward a further understanding of size effects in the torsion of thin metal wires: an experimental and theoretical assessment. Int J Plast 41:30–52

    Article  CAS  Google Scholar 

  31. Madou K, Leblond JB (2012a) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids-I: Limit-analysis of some representative cell. J Mech Phys Solids 60:1020–1036

    Article  Google Scholar 

  32. Madou K, Leblond JB (2012b) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids-II: determination of yield criterion parameters. J Mech Phys Solids 60:1037–1058

    Article  Google Scholar 

  33. Mi C, Buttry DA, Sharma P, Kouris DA (2011) Atomistic insights into dislocation-based mechanisms of void growth and coalescence. J Mech Phys Solids 59:1858–1871

    CAS  Article  Google Scholar 

  34. Monchiet V, Bonnet G (2010) Interfacial models in viscoplastic composites materials. International Journal of Engineering Science 48:1762–1768

    CAS  Article  Google Scholar 

  35. Monchiet V, Bonnet G (2013) A Gurson-type model accounting for void size effects. Int J Solids Struct 50:320–327

    Article  Google Scholar 

  36. Monchiet V, Kondo D (2013) Combined voids size and shape effects on the macroscopic criterion of ductile nanoporous materials. Int J Plast 43:20–41

    Article  Google Scholar 

  37. Monchiet V, Cazacu O, Charkaluk E, Kondo D (2008) Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. Int J Plast 24:1158–1189

    CAS  Article  Google Scholar 

  38. Morin L, Kondo D, Leblond JB (2015a) Numerical assessment, implementation and application of an extended Gurson model accounting for void size effects. Eur J Mech A 51:183–192

    Article  Google Scholar 

  39. Morin L, Leblond JB, Benzerga AA (2015b) Coalescence of voids by internal necking: theoretical estimates and numerical results. J Mech Phys Solids 75:140–158

    Article  Google Scholar 

  40. Morin L, Leblond JB, Kondo D (2015c) A Gurson-type criterion for plastically anisotropic solids containing arbitrary ellipsoidal voids. Int J Solids Struct 77:86–101

    Article  Google Scholar 

  41. Morin L, Leblond JB, Tvergaard V (2016) Application of a model of plastic porous materials including void shape effects to the prediction of ductile failure under shear-dominated loadings. J Mech Phys Solids 94:148–166

    Article  Google Scholar 

  42. Morin L, Michel JC, Leblond JB (2017) A Gurson-type layer model for ductile porous solids with isotropic and kinematic hardening. Int J Solids Struct 118:167–178

    Article  Google Scholar 

  43. Niordson CF (2008) Void growth to coalescence in a non-local material. Eur J Mech A 27:222–233

    Article  Google Scholar 

  44. Niordson CF, Tvergaard V (2019) A homogenized model for size-effects in porous metals. J Mech Phys Solids 123:222–233

    Article  Google Scholar 

  45. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425

    CAS  Article  Google Scholar 

  46. Perrin G, Leblond JB (1990) Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension-application to some problems in ductile fracture of metals. Int J Plast 6:677–699

    Article  Google Scholar 

  47. Pineau A, Benzerga AA, Pardoen T (2016) Failure of metals I - Brittle and ductile fracture. Acta Mater 107:424–483

    CAS  Article  Google Scholar 

  48. Scherer JM, Hure J (2019) A size-dependent ductile fracture model: constitutive equations, numerical implementation and validation. Eur J Mech A 76:135–145

    Article  Google Scholar 

  49. Segurado J, Llorca J (2009) An analysis of the size effect on void growth in single crystals using discrete dislocation dynamics. Acta Mater 57:1427–1436

    CAS  Article  Google Scholar 

  50. Segurado J, LLorca J (2010) Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals. Int J Plast 26:806–819

    CAS  Article  Google Scholar 

  51. Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41:2855–2865

    CAS  Article  Google Scholar 

  52. Tang FL, Cai HM, Bao HW, Xue HT, Lu WJ, Zhu L, Rui ZY (2014) Molecular dynamics simulations of void growth in \(\gamma \)-TiAl single crystal. Comput Mater Sci 84:232–237

    CAS  Article  Google Scholar 

  53. Taylor GI (1934) The mechanism of plastic deformation of crystals Part I. Theoretical containing papers of a mathematical and physical character. Proc R Soc Lond Ser A 145:362–387

    CAS  Article  Google Scholar 

  54. Torki ME, Tekoglu C, Leblond JB, Benzerga AA (2017) Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings. Int J Plast 91:160–181

    Article  Google Scholar 

  55. Traiviratana S, Bringa EM, Benson DJ, Meyers MA (2008) Void growth in metals: atomistic calculations. Acta Mater 56:3874–3886

    CAS  Article  Google Scholar 

  56. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407

    Article  Google Scholar 

  57. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Progr Mater Sci 45:103–189

    CAS  Article  Google Scholar 

  58. Wen J, Huang Y, Hwang KC, Liu C, Li M (2005) The modified Gurson model accounting for the void size effect. Int J Plast 21:381–395

    Article  Google Scholar 

  59. Zong Z, Lou J, Adewoye OO, Elmustafa AA, Hammad F, Soboyejo WO (2006) Indentation size effects in the nano- and micro-hardness of fcc single crystal metals. Mater Sci Eng A 434:178–187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Jean-Baptiste Leblond, whose work on ductile fracture has been a continuous source of inspiration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Léo Morin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morin, L., Kondo, D. An interphase approach of size effects in ductile porous materials. Int J Fract (2021). https://doi.org/10.1007/s10704-020-00507-6

Download citation

Keywords

  • Nanoporous materials
  • Void size effect
  • Strain gradient plasticity
  • Ductile materials