Dynamic fracture in a semicrystalline biobased polymer: an analysis of the fracture surface

Abstract

The fracture behaviour of a semi-crystalline bio-based polymer was studied. Dynamic fracture tests on strip band specimens were carried out. Fracture surfaces were observed at different scales by optical and electron microscopy to describe cracking scenarios. Crack initiation, propagation and arrest zones were described. Three distinct zones are highlighted in the initiation and propagation zone: a zone with conical markings, a mist zone and a hackle zone. The conical mark zone shows a variation in the size and density of the conical marks along the propagation path. This is synonymous with local speed variation. Microcracks at the origin of the conical marks in the initiation zone seem to develop from the nucleus of the spherulites. In the propagation zone with complex roughness, the direction of the microcracks and their cracking planes are highly variable. Their propagation directions are disturbed by the heterogeneities of the material. They branch or bifurcate at the level of the spherulites. In the arrest zone, the microcracks developed upstream continue to propagate in different directions. The surface created is increasingly smoother as the energy release rate decreases. It is shown that the local velocity of the crack varies in contrast to the macroscopic speed. A specific setup allowing to estimate the minimum fracture energy of the material in order to maintain the rapid propagation of the crack is proposed for materials with antagonistic behaviour: ductile at initiation and brittle in propagation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Arakawa K, Takahashi K (1991) Relationships between fracture parameters and fracture surface roughness of brittle polymers. Int J Fract 48(2):103–114

    CAS  Google Scholar 

  2. Barbosa L, Bortoluzzi D, Ancelotti JAC (2019) Analysis of fracture toughness in mode ii and fractographic study of composites based on elium\({\textregistered }\) 150 thermoplastic matrix. Compos Part B Eng 175:107082

    CAS  Google Scholar 

  3. Beguelin P, Fond C, Kausch HH (1997) The influence of inertial effects on the fracture of rapidly loaded compact tension specimens. Part a: loading and fracture initiation. J de Phys IV 7(C3):867–872

    Google Scholar 

  4. Beguelin P, Fond C, Kausch HH (1998) The influence of inertial effects on the fracture of rapidly loaded compact tension specimens. Part a: loading and fracture initiation. Int J Fract 89(1):85–102

    Google Scholar 

  5. Bisoffi-Sauve M, Morel S, Dubois F (2019) Modelling mixed mode fracture of mortar joints in masonry buildings. Eng Struct 182:316–330

    Google Scholar 

  6. Bleyer J, Roux-Langlois C, Molinari JF (2016) Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms. Int J Fract 204(1):79–100. https://doi.org/10.1007/s10704-016-0163-1

    Article  Google Scholar 

  7. Bonamy D, Ravi-Chandar K (2005) Dynamic crack response to a localized shear pulse perturbation in brittle amorphous materials: on crack surface roughening. Int J Fract 134(1):1–22

    CAS  Google Scholar 

  8. Bradley W, Cantwell W, Kausch H (1997) Viscoelastic creep crack growth: a review of fracture mechanical analyses. Mech Time Depend Mater 1(3):241–268

    CAS  Google Scholar 

  9. Broberg KB (1960) The propagation of a brittle crack. Arkiv for Fysik 18:159

    Google Scholar 

  10. Cambonie T, Bares J, Hattali M, Bonamy D, Lazarus V, Auradou H (2015) Effect of the porosity on the fracture surface roughness of sintered materials: From anisotropic to isotropic self-affine scaling. Phys Rev E Stat Nonlinear Soft Matter Phys 91(1):012406

    CAS  Google Scholar 

  11. Castagnet S, Gacougnolle JL, Dang P (2000a) Correlation between macroscopical viscoelastic behaviour and micromechanisms in strained \(\alpha \) polyvinylidene fluoride (pvdf). Mater Sci Eng A 276(1):152–159

    Google Scholar 

  12. Castagnet S, Girault S, Gacougnolle J, Dang P (2000b) Cavitation in strained polyvinylidene fluoride: mechanical and x-ray experimental studies. Polymer 41(20):7523–7530

    CAS  Google Scholar 

  13. Coré A, Kopp JB, Girardot J, Viot P (2018) Dynamic energy release rate evaluation of rapid crack propagation in discrete element analysis. Int J Fract 214(1):17–28

    Google Scholar 

  14. Cotterell B (1968) Fracture propagation in organic glasses. Int J Fract Mech 4(3):209–217

    Google Scholar 

  15. Cotterell B, Chia J, Hbaieb K (2007) Fracture mechanisms and fracture toughness in semicrystalline polymer nanocomposites. Eng Fract Mech 74(7):1054–1078

    Google Scholar 

  16. Cros PE, Rota L, Cottenot CE, Schirrer R, Fond C (2000) Experimental and numerical analysis of the impact behaviour of polycarbonate and polyurethane multilayer. J de Phys IV 10(Pr9):671–675

    Google Scholar 

  17. Dalmas D, Guerra C, Scheibert J, Bonamy D (2013) Damage mechanisms in the dynamic fracture of nominally brittle polymers. Int J Fract 184(1–2):93–111

    Google Scholar 

  18. Fineberg J, Bouchbinder E (2015) Recent developments in dynamic fracture: some perspectives. Int J Fract 196(1–2):33–57

    Google Scholar 

  19. Fineberg J, Marder M (1999) Instability in dynamic fracture. Phys Rep 313(1):1–108

    CAS  Google Scholar 

  20. Fineberg J, Gross S, Marder M, Swinney H (1991) Instability in dynamic fracture. Phys Rev Lett 67(4):457–460

    CAS  Google Scholar 

  21. Fond C, Schirrer R (1997) Influence of crack speed on fracture energy in amorphous and rubber toughened amorphous polymers. Plast Rubber Compos Macromol Eng 30:116–124

    Google Scholar 

  22. Fond C, Schirrer R (2001) Dynamic fracture surface energy and branching instabilities during rapid crack propagation in rubber toughened pmma. Notes au CRAS Ser IIb 329(3):195–200

    CAS  Google Scholar 

  23. Freund LB (1972) Crack propagation in an elastic solid subjected to general loading-i. Constant rate of extension. J Mech Phys Solids 20:129–140

    Google Scholar 

  24. Greenshields C, Venizelos G, Ivankovic A (2000) A fluid-structure model for fast brittle fracture in plastic pipes. J Fluids Struct 14(2):221–234

    Google Scholar 

  25. Guerra C, Scheibert J, Bonamy D, Dalmas D (2012) Understanding fast macroscale fracture from microcrack post mortem patterns. Proc Natl Acad Sci 109(2):390–394

    CAS  Google Scholar 

  26. Guerra Amaro CM (2009) Dynamic fracture in brittle amorphous materials : Dissipation mechanisms and dynamically-induced microcracking in PMMA. Theses, Ecole Polytechnique X, https://pastel.archives-ouvertes.fr/pastel-00006135

  27. Imachi M, Tanaka S, Ozdemir M, Bui T, Oterkus S, Oterkus E (2020) Dynamic crack arrest analysis by ordinary state-based peridynamics. Int J Fract 221(2):155–169

    CAS  Google Scholar 

  28. Irwin G, Dally J, Kobayashi T, Fourney W, Etheridge M, Rossmanith H (1979) On the determination of \(\dot{a} - k\) relationship for birefringent polymers. Exp Mech 19:121–128

    Google Scholar 

  29. Johnson J, Holloway D (1966) On the shape and size of the fracture zones on glass fracture surfaces. Philos Mag 14(130):731–743

    CAS  Google Scholar 

  30. Kies J, Sullivan A, Irwin G (1950) Interpretation of fracture markings. J Appl Phys 21(7):716–720

    Google Scholar 

  31. Kolvin I, Fineberg J, Adda-Bedia M (2017) Nonlinear focusing in dynamic crack fronts and the microbranching transition. Phys Rev Lett 119(21):215505

    Google Scholar 

  32. Kopp JB, Lin J, Schmittbuhl J, Fond C (2014a) Longitudinal dynamic fracture of polymer pipes. Eur J Environ Civil Eng 18(10):1097–1105

    Google Scholar 

  33. Kopp JB, Schmittbuhl J, Noel O, Lin J, Fond C (2014b) Fluctuations of the dynamic fracture energy values related to the amount of created fracture surface. Eng Fract Mech 126:178–189

    Google Scholar 

  34. Kopp JB, Schmittbuhl J, Noel O, Fond C (2015) A self-affine geometrical model of dynamic rt-pmma fractures: implications for fracture energy measurements. Int J Fract 193(2):141–152

    CAS  Google Scholar 

  35. Kopp JB, Fond C, Hochstetter G (2018) Rapid crack propagation in pa11: an application to pipe structure. Eng Fract Mech 202:445–457

    Google Scholar 

  36. Le Barbenchon L, Kopp JB, Girardot J, Viot P (2020) Reinforcement of cellular materials with short fibres: application to a bio-based cork multi-scale foam. Mech Mater 142:103271

    Google Scholar 

  37. Lebihain M, Leblond JB, Ponson L (2020) Effective toughness of periodic heterogeneous materials: the effect of out-of-plane excursions of cracks. J Mech Phys Solids 137:103876

    Google Scholar 

  38. Mason J, Chen J (2006) Establishing the correlation between s4 and full scale rapid crack propagation testing for polyamide-11 (pa-11) pipe. Plastic pipes XIII

  39. Nilsson F (1972) Dynamic stress-intensity factors for finite strip problems. Int J Fract 8:403–411

    Google Scholar 

  40. Nishioka T (1995) Recent developments in computational dynamic fracture mechanics. Dyn Fract Mech 1995:1–60

    Google Scholar 

  41. Ponson L (2016) Statistical aspects in crack growth phenomena: how the fluctuations reveal the failure mechanisms. Int J Fract 201(1):11–27

    CAS  Google Scholar 

  42. Ponson L, Bonamy D (2010) Crack propagation in brittle heterogeneous solids: material disorder and crack dynamics. Int J Fract 162(1–2):21–31

    Google Scholar 

  43. Ponson L, Bonamy D, Bouchaud E (2006) Two-dimensional scaling properties of experimental fracture surfaces. Phys Rev Lett 96(3):035506

    CAS  Google Scholar 

  44. Poulet PA, Hochstetter G, King A, Proudhon H, Joannès S, Laiarinandrasana L (2016) Observations by in-situ x-ray z of the microstructural evolution of semi-crystalline polyamide 11 during deformation. Polym Test 56:245–260

    CAS  Google Scholar 

  45. Raphael I, Saintier N, Robert G, Béga J, Laiarinandrasana L (2019) On the role of the spherulitic microstructure in fatigue damage of pure polymer and glass-fiber reinforced semi-crystalline polyamide 6.6. Int J Fatigue 126:44–54

    CAS  Google Scholar 

  46. Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90(1–2):83–102

    CAS  Google Scholar 

  47. Ravi-Chandar K, Knauss W (1982) Dynamic crack-tip stresses under stress wave loading—a comparison of theory and experiment. Int J Fract 20(3):209–222

    Google Scholar 

  48. Ravi-Chandar K, Knauss W (1984a) An experimental investigation into dynamic fracture: Ii. Microstructural aspects. Int J Fract 26(1):65–80

    Google Scholar 

  49. Ravi-Chandar K, Knauss W (1984b) An experimental investigation into dynamic fracture: Iii. On steady-state crack propagation and crack branching. Int J Fract 26(2):141–154

    Google Scholar 

  50. Rice J (1964) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech Trans ASME 35(2):379–388

    Google Scholar 

  51. Rittel D, Maigre H (1996) An investigation of dynamic crack initiation in pmma. Mech Mater 23(3):229–239

    Google Scholar 

  52. Rolland H, Saintier N, Raphael I, Lenoir N, King A, Robert G (2018) Fatigue damage mechanisms of short fiber reinforced pa66 as observed by in-situ synchrotron x-ray microtomography. Compos Part B Eng 143:217–229

    CAS  Google Scholar 

  53. Rosakis A, Zehnder A (1985) On the dynamic fracture of structural metals. Int J Fract 27:169–186

    Google Scholar 

  54. Schultz J (1984) Microstructural aspects of failure in semicrystalline polymers. Polym Eng Sci 24(10):770–785

    CAS  Google Scholar 

  55. Selles N, Cloetens P, Proudhon H, Morgeneyer TF, Klinkova O, Saintier N, Laiarinandrasana L (2017) Voiding mechanisms in deformed polyamide 6 observed at the nanometric scale. Macromolecules 50(11):4372–4383

    CAS  Google Scholar 

  56. Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B Condens Matter Mater Phys 54(10):7128–7139

    CAS  Google Scholar 

  57. Sharon E, Fineberg J (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397(6717):333–335

    CAS  Google Scholar 

  58. Sheng J, Zhao YP (2000) Two critical crack propagating velocities for pmma fracture surface. Int J Fract 98:L9–L14

    Google Scholar 

  59. Varela Valdez A, Morel S, Marache A, Hinojosa M, Riss J (2018) Influence of fracture roughness and micro-fracturing on the mechanical response of rock joints: a discrete element approach. Int J Fract 213(2):87–105

    Google Scholar 

  60. Villette F, Baroth J, Dufour F, Bloch JF, Roscoat SRD (2019) Influence of material heterogeneities on crack propagation statistics using a fiber bundle model. Int J Fract 221(1):87–100. https://doi.org/10.1007/s10704-019-00409-2

    Article  Google Scholar 

  61. Williams J, Venizelos G (1999) A perturbation analysis of rapid crack propagation in pressurised pipe. Int J Fract 94(2):161–176

    Google Scholar 

  62. Yang B, Ravi-Chandar K (1996) On the role of the process zone in dynamic fracture. J Mech Phys Solids 44(12):1955–1976

    Google Scholar 

  63. Yoffe EH (1951) The moving griffith crack. Philos Mag 42(7):739–750

    Google Scholar 

  64. Yu ZZ, Ou YC, Qi ZN, Hu GH (1998) Toughening of nylon 6 with a maleated core-shell impact modifier. J Polym Sci Part B Polym Phys 36(11):1987–1994

    CAS  Google Scholar 

  65. Zhou F, Molinari JF, Shioya T (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fract Mech 72(9):1383–1410. https://doi.org/10.1016/j.engfracmech.2004.10.011

    Article  Google Scholar 

  66. Zhurkov SN, Kuksenko VS (1875) The micromechanics of polymer fracture. Int J Fract 11:629–639

    Google Scholar 

  67. Zhurkov SN, Zakrevskyi VA, Korsukov VE, Kuksenko VS (1972) Mechanism of submicrocrack generation in stressed polymers. J Polym Sci Part A-2 Polym Phys 10(8):1509–1520

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to warmly thank the participation in this work of V. Honno and A. Bradu who did a Bachelor internship on the subject and J. Bega for his technical support on microscopic analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Benoît Kopp.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kopp, J., Girardot, J. Dynamic fracture in a semicrystalline biobased polymer: an analysis of the fracture surface. Int J Fract 226, 121–132 (2020). https://doi.org/10.1007/s10704-020-00482-y

Download citation

Keywords

  • Dynamic fracture
  • Rapid crack propagation
  • Fracture surface analysis
  • Semi-crystalline
  • Polymer