Energy release rate of a single edge cracked specimen subjected to large deformation

Abstract

The single edge notch specimen (SEN) is commonly used to measure the fracture toughness, or critical energy release rate of soft elastic materials. To measure toughness, an expression for the energy release rate, J, the mechanical energy available for growing the crack per unit area, is needed. Since strains in these fracture experiments can easily exceed several hundred percent, large deformation analysis is needed to calculate J. An approximate formula for J in SEN samples subjected to moderately large deformation was given by Rivlin and Thomas in J Polym Sci 10:291–318. https://doi.org/10.1002/pol.1953.120100303 (1953) and Greensmith in J Appl Polymer Sci 7:993–1002. https://doi.org/10.1002/app.1963.070070316 (1963). However, this formula works only for small crack lengths, for stretch ratio up to two and does not match the linear elastic result in the limit of small strains. In this paper we carry out a series of finite element (FE) simulations to obtain accurate approximations that are valid for all practical crack lengths and strain levels. Our FE result shows that the small crack approximation of by Rivlin and Thomas in J Polym Sci 10:291–318. https://doi.org/10.1002/pol.1953.120100303 (1953) does not work well in the small strain regime, and in particular, result of Greensmith in J Appl Polymer Sci 7:993–1002. https://doi.org/10.1002/app.1963.070070316 (1963) underestimates the energy release rate for stretch ratios less than 1.5.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of data and material

This work does not have any experimental data.

References

  1. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412. https://doi.org/10.1016/0022-5096(93)90013-6

    CAS  Article  Google Scholar 

  2. Bai R, Yang J, Morelle XP et al (2018) Fatigue fracture of self-recovery hydrogels. ACS Macro Lett 7:312–317. https://doi.org/10.1021/acsmacrolett.8b00045

    CAS  Article  Google Scholar 

  3. Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73:504–523. https://doi.org/10.5254/1.3547602

    CAS  Article  Google Scholar 

  4. Chen C, Wang Z, Suo Z (2017) Flaw sensitivity of highly stretchable materials. Extreme Mech Lett 10:50–57. https://doi.org/10.1016/j.eml.2016.10.002

    Article  Google Scholar 

  5. Cristiano A, Marcellan A, Keestra BJ et al (2011) Fracture of model polyurethane elastomeric networks. J Polym Sci Part B 49:355–367. https://doi.org/10.1002/polb.22186

    CAS  Article  Google Scholar 

  6. Ducrot E, Chen Y, Bulters M et al (2014) Toughening elastomers with sacrificial bonds and watching them break. Science 344:186–189. https://doi.org/10.1126/science.1248494

    CAS  Article  Google Scholar 

  7. Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69:59–61. https://doi.org/10.5254/1.3538357

    CAS  Article  Google Scholar 

  8. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. https://doi.org/10.1002/adma.200304907

    CAS  Article  Google Scholar 

  9. Greensmith HW (1963) Rupture of rubber. X. The change in stored energy on making a small cut in a test piece held in simple extension. J Appl Polymer Sci 7:993–1002. https://doi.org/10.1002/app.1963.070070316

    CAS  Article  Google Scholar 

  10. Hamed GR, Park BH (1999) The mechanism of carbon black reinforcement of SBR and NR vulcanizates. Rubber Chem Technol 72:946–959. https://doi.org/10.5254/1.3538844

    Article  Google Scholar 

  11. Kim JY, Liu Z, Weon BM et al (2020) Extreme cavity expansion in soft solids: damage without fracture. Sci Adv 6:eaaz0418. https://doi.org/10.1126/sciadv.aaz0418

    Article  Google Scholar 

  12. Kundu S, Crosby AJ (2009) Cavitation and fracture behavior of polyacrylamide hydrogels. Soft Matter 5:3963. https://doi.org/10.1039/b909237d

    CAS  Article  Google Scholar 

  13. Kwon HJ, Rogalsky AD, Kim D-W (2011) On the measurement of fracture toughness of soft biogel. Polymer Eng Sci 51:1078–1086. https://doi.org/10.1002/pen.21923

    CAS  Article  Google Scholar 

  14. Kwon SW, Sun CT (2000) Characteristics of three-dimensional stress fields in plates with a through-the-thickness crack. Int J Fract 104:289–314. https://doi.org/10.1023/A:1007601918058

    Article  Google Scholar 

  15. Lin W-C, Fan W, Marcellan A et al (2010) Large strain and fracture properties of poly(dimethylacrylamide)/silica hybrid hydrogels. Macromolecules 43:2554–2563. https://doi.org/10.1021/ma901937r

    CAS  Article  Google Scholar 

  16. Lin W-C, Marcellan A, Hourdet D, Creton C (2011) Effect of polymer-particle interaction on the fracture toughness of silica filled hydrogels. Soft Matter 7:6578. https://doi.org/10.1039/c1sm05420a

    CAS  Article  Google Scholar 

  17. Lindley PB (1972) Energy for crack growth in model rubber components. J Strain Anal 7:132–140. https://doi.org/10.1243/03093247V072132

    Article  Google Scholar 

  18. Mayumi K, Guo J, Narita T et al (2016) Fracture of dual crosslink gels with permanent and transient crosslinks. Extreme Mech Lett 6:52–59. https://doi.org/10.1016/j.eml.2015.12.002

    Article  Google Scholar 

  19. Morelle XP, Illeperuma WR, Tian K et al (2018) Highly stretchable and tough hydrogels below water freezing temperature. Adv Mater 30:1801541. https://doi.org/10.1002/adma.201801541

    CAS  Article  Google Scholar 

  20. Rivlin RS, Thomas AG (1953) Rupture of rubber. I. Characteristic energy for tearing. J Polym Sci 10:291–318. https://doi.org/10.1002/pol.1953.120100303

    CAS  Article  Google Scholar 

  21. Roucou D, Diani J, Brieu M et al (2018) Experimental investigation of elastomer mode I fracture: an attempt to estimate the critical strain energy release rate using SENT tests. Int J Fract 209:163–170. https://doi.org/10.1007/s10704-017-0251-x

    CAS  Article  Google Scholar 

  22. Sun J-Y, Zhao X, Illeperuma WRK et al (2012) Highly stretchable and tough hydrogels. Nature 489:133–136. https://doi.org/10.1038/nature11409

    CAS  Article  Google Scholar 

  23. Tada H, Paris PC, Irwin GR, Tada H (2000) The stress analysis of cracks handbook. ASME Press, New York

    Google Scholar 

  24. Tanaka Y, Kuwabara R, Na Y-H et al (2005) Determination of fracture energy of high strength double network hydrogels. J Phys Chem B 109:11559–11562. https://doi.org/10.1021/jp0500790

    CAS  Article  Google Scholar 

  25. Wigglesworth LA (1957) Stress distribution in a notched plate. Mathematika 4:76–96. https://doi.org/10.1112/S002557930000111X

    Article  Google Scholar 

  26. Yeoh OH (2002) Relation between crack surface displacements and strain energy release rate in thin rubber sheets. Mech Mater 34:459–474. https://doi.org/10.1016/S0167-6636(02)00174-6

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1903308. We are grateful to the reviewers for their helpful comments.

Funding

National Science Foundation under Grant No. CMMI-1903308.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chung-Yuen Hui.

Ethics declarations

Conflicts of interest

We declare we have no competing interests.

Code availability

Abaqus input files are available in the Electronic Supplementary Material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1865 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zakoworotny, M., Guo, J. et al. Energy release rate of a single edge cracked specimen subjected to large deformation. Int J Fract 226, 71–79 (2020). https://doi.org/10.1007/s10704-020-00479-7

Download citation

Keywords

  • Single edge notch specimen
  • Energy release rate
  • Large deformation
  • Finite element method