Skip to main content

Anisotropy of fracture in hexagonal metals

Abstract

When plastic deformation in hexagonal metals with lower symmetry than in cubic metals cannot support the external load, the crystal can break along a certain plane. Using a simple criterion based on the surface energy, Young modulus and interplanar separation, the anisotropy of fracture is discussed for three typical hexagonal metals, magnesium, titanium and zinc. The obtained results are generally in agreement with the experimental observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ando S, Sakamoto T, Ikejiri Y et al (2006) Crack orientation dependence of fatigue behavior in titanium single crystals by thin sheet plain bending. Key Eng Mater 326–328:967–970

    Article  Google Scholar 

  2. Ando S, Tsushida M, Kitahara H (2010) Deformation behavior of magnesium single crystal in c-axis compression and a-axis tension. Mater Sci Forum 654–656:699–702

    Article  Google Scholar 

  3. Ando S, Kitahara H, Tsushida M (2011) Fatigue behavior of pure titanium single crystals by bending method. Proc Eng 10:1384–1389. https://doi.org/10.1016/j.proeng.2011.04.230

    CAS  Article  Google Scholar 

  4. Bullen FP (1963) Cleavage of zinc single crystals. Trans Met Soc AIME 227:1069–1077

    CAS  Google Scholar 

  5. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157. https://doi.org/10.1016/0079-6425(94)_00007-7

    Article  Google Scholar 

  6. Deruyttere AE, Greenough GB (1953) Cleavage fracture of zinc single crystals. Nature 172:170–171. https://doi.org/10.1038/172170a0

    CAS  Article  Google Scholar 

  7. Deruyttere AE, Greenough GB (1956) The criterion for the cleavage fracture of zinc single crystals. J Inst Met 84:337–345

    CAS  Google Scholar 

  8. Gandhi C, Ashby MF (1979) Fracture-mechanism maps for materials which cleave: f.c.c., b.c.c. and h.c.p. metals and ceramics. Acta Metal 27:1565–1602

    CAS  Article  Google Scholar 

  9. Kaushik YV, Narasimhan R, Mishra RK (2014) Experimental study of fracture behavior of magnesium single crystals. Mater Sci Eng A 590:174–185. https://doi.org/10.1016/j.msea.2013.10.018

    CAS  Article  Google Scholar 

  10. Luo Y, Qin R (2014) Surface energy and its anisotropy of hexagonal close-packed metals. Surf Sci 630:195–201. https://doi.org/10.1016/j.susc.2014.08.013

    CAS  Article  Google Scholar 

  11. Macmillan NH, Kelly A (1972) On the relationship between ideal tensile strength and surface energy. Mater Sci Eng A 10:139–143. https://doi.org/10.1016/0025-5416(72)_90078-X

    CAS  Article  Google Scholar 

  12. Mine Y, Ando S, Takashima K (2011) Crystallographic fatigue crack growth in titanium single crystals. Mater Sci Eng A 528:7570–7578. https://doi.org/10.1016/j.msea.2011.06.079

    CAS  Article  Google Scholar 

  13. Paidar V, Čapek J, Ostapovets A (2018) Secondary twinning in zinc. Philos Mag Lett 98:437–445. https://doi.org/10.1080/09500839.2019.1566799

    CAS  Article  Google Scholar 

  14. Tang Y, El-Awady JA (2014) Formation and slip of pyramidal dislocations in hexagonal close packed magnesium single crystals. Acta Mater 71:319–332. https://doi.org/10.1016/j.actamat.2014.03.022

    CAS  Article  Google Scholar 

  15. Tromans D (2011) Elastic anisotropy of hcp metal crystals and polycrystrals. Int J Rec Res Appl Stud 61:452–483

    Google Scholar 

  16. Wang J, Beyerlein IJ, Tome CN (2010) An atomic and probabilistic perspective on twin nucleation in Mg. Scripta Mater 63:741–746. https://doi.org/10.1016/j.scriptamat.2010.01.047

    CAS  Article  Google Scholar 

  17. Wu Z, Curtin WA (2015) Brittle and ductile crack-tip behavior in magnesium. Acta Mater 88:1–12. https://doi.org/10.1016/j.actamat.2015.01.023

    CAS  Article  Google Scholar 

  18. Wu Z, Curtin WA (2016) Intrinsic structural transitions of the pyramidal I \(< {\rm c}+{\rm a}>\) dislocation in magnesium. Scripta Mater. 116:104–107. https://doi.org/10.1016/j.scriptamat.2016.01.041

    CAS  Article  Google Scholar 

  19. Yoo MH (1981) Slip, twinning, and fracture in hexagonal close-packed metals. Metal Trans 12A:409–418

    Article  Google Scholar 

  20. Yoo MH, Wei CT (1967) Slip modes of hexagonal-close-packed metals. J Appl Phys 38:4317. https://doi.org/10.1063/1.1709121

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Czech Science Foundation [Projects No. 18-06110S] and the Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports [Project No. SOLID21].

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Paidar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paidar, V., Čapek, J. Anisotropy of fracture in hexagonal metals. Int J Fract 225, 123–127 (2020). https://doi.org/10.1007/s10704-020-00472-0

Download citation

Keywords

  • Metals magnesium–titanium–zinc
  • Mechanical properties
  • Surface energy
  • Fracture