Skip to main content
Log in

On the experimental determination of the \(\mathcal {J}\)-curve of quasi-brittle composite materials

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Four different methods to experimentally determine the \(\mathcal {J}\)-curve of quasi-brittle materials are analysed and discussed in this work. The first two methods measure the integral of the cohesive law, \(\mathcal {J}(\omega )\), from an initial notch. However, the correct definition of the notch geometry is of critical importance for an accurate identification of the cohesive law. The other two methods measure \(\mathcal {J}(\omega )\) when the crack is propagating with a fully-developed cohesive zone. In this case, the cohesive law is obtained by determining the crack opening displacement along the fracture process zone without requiring information about the geometry of the initial notch. The four methods are discussed highlighting the corresponding advantages, limitations and required experimental results. Then, the results of the four methods are compared and validated by considering the experimental results of the Compact Tension test of a quasi-isotropic carbon fibre composite laminate. Finally, some recommendations are given on which of the four methods is the most appropriate to characterise the material \(\mathcal {J}(\omega )\) law based on the available measuring techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdel Monsef S, Ortega A, Turon A, Maimí P, Renart J (2019) An efficient method to extract a mode I cohesive law for bonded joints using the double cantilever beam test. Compos Part B Eng 178(June):107424

    Google Scholar 

  • Albertsen H, Ivens J, Peters P, Wevers M, Verpoest I (1995) Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental results. Compos Sci Technol 54(2):133–145

    CAS  Google Scholar 

  • ASTM D 5045 (1999) Standard test methods for plane-strain fracture toughness and strain energy release

  • ASTM E 399 (2009) Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials

  • Ballarini R (1986) Compliance matrices for cracked bodies. Int J Fract 31:63–66

    Google Scholar 

  • Bao G, Suo Z (1992) Remarks on crack-bridging concepts. Appl Mech Rev 45(8):355–366

    Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. In: Advances in applied mechanics, vol 7, Elsevier, pp 55–129

  • Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Matériaux et Construction 16(3):155–177

    Google Scholar 

  • Bergan A, Dávila CG, Leone FA, Awerbuch J, Tan TM (2016) A Mode I cohesive law characterization procedure for through-the-thickness crack propagation in composite laminates. Compos Part B Eng 94:338–349

    CAS  Google Scholar 

  • Bolzon G, Maier G (1988) Identification of cohesive crack models for concrete on the basis of three-point-bending tests. In: Computational modelling of concrete structures, pp 301–308

  • Bolzon G, Fedele R, Maier G (2002) Parameter identification of a cohesive crack model by Kalman filter. Computer Methods in Applied Mechanics and Engineering 191(25):2847–2871

    Google Scholar 

  • Catalanotti G, Camanho P, Xavier J, Dávila C, Marques A (2010) Measurement of resistance curves in the longitudinal failure of composites using Digital Image Correlation. Compos Sci Technol 70(13):1986–1993

    CAS  Google Scholar 

  • Cherepanov GP (1967) Crack propagation in continuous media. J Appl Math Mech 31:476–488

    Google Scholar 

  • Cox BN, Marshall DB (1991) The determination of crack bridging forces. Int J Fract 49:159–176

    Google Scholar 

  • Dourado N, De Moura MFSF, De Morais AB, Pereira AB (2012) Bilinear approximations to the mode II delamination cohesive law using an inverse method. Mech Mater 49:42–50

    Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Google Scholar 

  • Elices M, Planas J (1993) The equivalent elastic crack: 1. Load-y equivalences. Int J Fract 61(2):159–172

    Google Scholar 

  • Elices M, Guinea GV, Gómez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69(2):137–163

    Google Scholar 

  • Evans RH, Marathe MS (1968) Microcracking and stress-strain curves for concrete in tension. Matériaux et Constructions 1(1):61–64

    Google Scholar 

  • Guinea G, Planas J, Elices M (1994) A general bilinear fit for the softening curve of concrete. Mater Struct 27(2):99–105

    Google Scholar 

  • Hollmann K, Bäcklund J (1988) Notch sensitivity of linearly softening materials exhibiting tensile fracture. Eng Fract Mech 31(4):577–590

    Google Scholar 

  • Kabeel A, Maimí P, Gascons N, González E (2013) Nominal strength of quasi-brittle open hole specimens under biaxial loading conditions. Compos Sci Technol 87:42–49

    Google Scholar 

  • Kabeel A, Maimí P, Gascons N, González E (2014) Net-tension strength of double lap joints taking into account the material cohesive law. Compos Struct 112:207–213

    Google Scholar 

  • Kabeel A, Maimí P, González E, Gascons N (2015) Net-tension strength of double-lap joints under bearing-bypass loading conditions using the cohesive zone model. Compos Struct 119:443–451

    Google Scholar 

  • Kitsutaka Y (1997) Fracture parameters by polylinear tension-softening analysis. J Eng Mech 123(5):444–450

    Google Scholar 

  • Laffan MJ, Pinho ST, Robinson P, Iannucci L (2010) Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part I: data reduction. Compos Sci Technol 70(4):606–613

    CAS  Google Scholar 

  • Laffan MJ, Pinho ST, Robinson P, McMillan AJ (2011) Translaminar fracture toughness: the critical notch tip radius of 0\(^\circ \) plies in CFRP. Compos Sci Technol 72(1):97–102

    CAS  Google Scholar 

  • Li V, Ward RJ (1989) A novel testing for post-peak tensile behavior of cementitious composites. In: Balkema AA (ed) International workshop on fracture toughness and fracture energy. A.A. Balkema, Rotterdam, pp 183–195

    Google Scholar 

  • Li VC, Chan CM, Leung CKY (1987) Experimental determination of the tension-softening curve in cementitious composites. Cem Concr Res 17:441–452

    CAS  Google Scholar 

  • Lindhagen JE, Berglund LA (2000) Application of bridging-law concepts to short-fibre composites. Part 1: DCB test procedures for bridging law and fracture energy. Compos Sci Technol 60(6):871–883

    CAS  Google Scholar 

  • Lindhagen JE, Gamstedt EK, Berglund LA (2000) Application of bridging-law concepts to short-fibre composites. Part 3: Bridging law derivation from experimental crack profiles. Compos Sci Technol 60(16):2883–2894

    CAS  Google Scholar 

  • Luiz J, Oliveira AD, Gettu R (2006) Determining the tensile stress-crack opening curve. J Eng Mech 132(2):141–148

    Google Scholar 

  • Maimí P, Camanho PP, Mayugo J, Dávila C (2007a) A continuum damage model for composite laminates: Part I-constitutive model. Mech Mater 39(10):897–908

    Google Scholar 

  • Maimí P, Camanho PP, Mayugo J, Dávila C (2007b) A continuum damage model for composite laminates: Part II-computational implementation and validation. Mech Mater 39(10):909–919

    Google Scholar 

  • Maimí P, Trias D, González E, Renart J (2012) Nominal strength of quasi-brittle open hole specimens. Compos Sci Technol 72(10):1203–1208

    Google Scholar 

  • Maimí P, González EV, Gascons N, Ripoll L (2013) Size effect law and critical distance theories to predict the nominal strength of quasibrittle structures. Appl Mech Rev 65(2):0203–0208

    Google Scholar 

  • Mall S, Newman Jr JC (1985) The Dugdale Model for Compact Specimen. In: Kanninen MF, Hopper AT (eds) Fracture mechanics: sixteenth symposium, ASTM STP 868, pp 113–128

  • Markeset G, Hillerborg A (1995) Softening of concrete in compression—localization and size effects. Cem Concr Res 25(4):702–708

    CAS  Google Scholar 

  • Martín-Santos E, Maimí P, González E, Cruz P (2014) A continuum constitutive model for the simulation of fabric-reinforced composites. Compos Struct 111:122–129

    Google Scholar 

  • Newman JC Jr, Yamada Y, James M (2010) Stress-intensity-factor equations for compact specimen subjected to concentrated forces. Eng Fract Mech 77(6):1025–1029

    Google Scholar 

  • Nishida T, Hanaki Y, Pezzotti G (1994) Effect of notch-root radius on the fracture toughness of a fine-grained alumina. J Am Ceramic Soc 77(2):606–608

    CAS  Google Scholar 

  • Ortega A (2017) Characterization of the translaminar fracture Cohesive Law. PhD thesis, Universitat de Girona

  • Ortega A, Maimí P, González E, Ripoll L (2014) Compact tension specimen for orthotropic materials. Compos Part A Appl Sci Manuf 63:85–93

    Google Scholar 

  • Ortega A, Maimí P, González E, Trias D (2016) Characterization of the translaminar fracture cohesive law. Compos Part A Appl Sci Manuf 91:501–509

    CAS  Google Scholar 

  • Ortega A, Maimí P, González EV, Sainz de Ajá J, Martín de la Escalera F, Cruz P (2017a) Translaminar fracture toughness of interply hybrid laminates under tensile and compressive loads. Compos Sci Technol 143:1–12

    CAS  Google Scholar 

  • Ortega A, Maimí P, González EV, Trias D (2017b) Specimen geometry and specimen size dependence of the R-curve and the size effect law from a cohesive model point of view. Int J Fract 205:239–254

    Google Scholar 

  • Paris AJ, Paris PC (1988) Instantaneous evaluation of J and C. Int J Fract 38(1):8–10

    Google Scholar 

  • Pereira FA, de Moura MF, Dourado N, Morais JJ, Xavier J, Dias MI (2017) Direct and inverse methods applied to the determination of mode I cohesive law of bovine cortical bone using the DCB test. Int J Solids Struct 128:210–220

    Google Scholar 

  • Pinho ST, Robinson P, Iannucci L (2006) Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos Sci Technol 66(13):2069–2079

    CAS  Google Scholar 

  • Pop O, Dubois F, Absi J (2013) J-integral evaluation in cracked wood specimen using the mark tracking method. Wood Sci Technol 47(2):257–267

    CAS  Google Scholar 

  • Que NS, Tin-Loi F (2002) An optimization approach for indirect identification of cohesive crack properties. Comput Struct 80(16):1383–1392

    Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35(2):379–386

    Google Scholar 

  • Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10(11):817–830

    CAS  Google Scholar 

  • Roelfstra PE, Wittmann FH (1986) Fracture toughness and fracture energy of concrete engineering. In: Wittmann (ed) Fracture toughness and fracture energy of concrete, Elsevier, chap Numerical, pp 163–175

  • Sangha CM, Dhir RK (1972) Strength and complete stress-strain relationships for concrete tested in uniaxial compression under different test conditions. Matériaux et Constructions 5(6):361–370

    Google Scholar 

  • Sarrado C, Turon A, Costa J, Renart J (2016) An experimental analysis of the fracture behavior of composite bonded joints in terms of cohesive laws. Compos Part A Appl Sci Manuf 90:234–242

    CAS  Google Scholar 

  • Silva FGA, Morais JJL, Dourado N, Xavier J, Pereira FAM, De Moura MFSF (2014) Determination of cohesive laws in wood bonded joints under mode II loading using the ENF test. Int J Adhes Adhes 51(8):54–61

    CAS  Google Scholar 

  • Sørensen BF (2002) Cohesive law and notch sensitivity of adhesive joints. Acta Materialia 50(5):1053–1061

    Google Scholar 

  • Sørensen BF, Jacobsen TK (1998) Large-scale bridging in composites: R-curves and bridging laws. Compos Part A Appl Sci Manuf 29(11):1443–1451

    Google Scholar 

  • Sørensen BF, Jacobsen TK (2009) Characterizing delamination of fibre composites by mixed mode cohesive laws. Compos Sci Technol 69(3–4):445–456

    Google Scholar 

  • Soutis C, Fleck N, Smith P (1991) Failure prediction technique for compression loaded carbon fibre-epoxy laminate with open holes. J Compos Mater 25(11):1476–1498

    Google Scholar 

  • Suo Z (1990) Delamination specimens for orthotropic materials. J Appl Mech 57(3):627–634

    Google Scholar 

  • Suo Z, Bao G, Fan B, Wang TC (1991) Orthotropy rescaling and implications for fracture in composites. Int J Solids Struct 28(2):235–248

    Google Scholar 

  • Suo Z, Bao G, Fan B (1992) Delamination R-curve phenomena due to damage. J Mech Phys Solids 40(1):1–16

    Google Scholar 

  • Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook. American Society of Mechanical Engineers, New York

    Google Scholar 

  • Tin-Loi F, Que NS (2001) Parameter identification of quasibrittle materials as a mathematical program with equilibrium constraints. Comput Methods Appl Mech Eng 190(43):5819–5836

    Google Scholar 

  • Tin-Loi F, Que NS (2002) Identification of cohesive crack fracture parameters by evolutionary search. Comput Methods Appl Mech Eng 191(49):5741–5760

    Google Scholar 

  • Tracy J, Waas A, Daly S (2015a) Experimental assessment of toughness in ceramic matrix composites using the j-integral with digital image correlation part i: methodology and validation. J Mater Sci 50(13):4646–4658

    CAS  Google Scholar 

  • Tracy J, Waas A, Daly S (2015b) Experimental assessment of toughness in ceramic matrix composites using the j-integral with digital image correlation part ii: application to ceramic matrix composites. J Mater Sci 50(13):4659–4671

    CAS  Google Scholar 

  • Ulfkjær JP, Brincker R (1992) Indirect Determination of the sigma—omega Relation of HCS through Three-Point Bending. Tech. rep., Dept. of Building Technology and Structural Engineering, Aalborg University, Aalborg

  • Yang QD, Thouless MD (2001) Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int J Fract 110(2):175–187

    Google Scholar 

  • Yang QD, Thouless MD, Ward SM (1999) Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J Mech Phys Solids 47(6):1337–1353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Maimí.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The financial support of the grant RTI2018-097880-B-I00 from the Spanish Ministerio de Ciencia, Innovación y Universidades is acknowledged. The fifth author also acknowledges the financial support from the Spanish Government through the mobility grant José Castillejo CAS16/00260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maimí, P., Wagih, A., Ortega, A. et al. On the experimental determination of the \(\mathcal {J}\)-curve of quasi-brittle composite materials. Int J Fract 224, 199–215 (2020). https://doi.org/10.1007/s10704-020-00456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-020-00456-0

Keywords

Navigation