Skip to main content
Log in

A fast algorithm for fracture simulations representing fibre breakage and matrix failure in three-dimensional fibre composites

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A linear, periodic, three-dimensional shear-lag model of unidirectionally-reinforced composites that allows for fibre breakage, and matrix failure is proposed. Matrix failure can take the form of matrix splitting or interfacial debonding. A computationally efficient scheme for its solution is developed. This scheme exploits the translation invariance of the elastostatic fields due to failed elements in the periodic cell, and is asymptotically faster than the classical eigensolution-based approach. The new computational scheme is used to illustrate the influence of matrix failure on the elastostatic fields induced by small clusters of fibre breaks in several test problems. Monte Carlo simulations of fracture in model three-dimensional composite specimen with Weibull-distributed fibre segment strengths are also performed. Matrix failure is found to considerably alter fracture development, to weaken the median specimen, and to reduce the variability in composite strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Anderson DG (1965) Iterative procedures for nonlinear integral equations. J ACM 12(4):547–560

    Article  Google Scholar 

  • Bai ZZ (2006) Structured preconditioners for nonsingular matrices of block two-by-two structures. Math Comput 75(254):791–815

    Article  Google Scholar 

  • Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numerica 14:1–137

    Article  Google Scholar 

  • Beyerlein IJ, Landis CM (1999) Shear-lag model for failure simulations of unidirectional fiber composites including matrix stiffness. Mech Mater 31(5):331–350

    Article  Google Scholar 

  • Beyerlein IJ, Phoenix SL (1996) Stress concentrations around multiple fiber breaks in an elastic matrix with local yielding or debonding using quadratic influence superposition. J Mech Phys Solids 44(12):1997–2039

    Article  Google Scholar 

  • Beyerlein IJ, Phoenix SL (1997) Statistics of fracture for an elastic notched composite lamina containing Weibull fibers—part I. Features from monte-carlo simulation. Eng Fract Mech 57(2–3):241–265

    Article  Google Scholar 

  • Beyerlein IJ, Phoenix SL, Sastry AM (1996) Comparison of shear-lag theory and continuum fracture mechanics for modeling fiber and matrix stresses in an elastic cracked composite lamina. Int J Solids Struct 33(18):2543–2574

    Article  Google Scholar 

  • Briggs WL, Henson VE (1995) The DFT: an owners’ manual for the discrete Fourier transform. SIAM, New Delhi

    Book  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT Press, Cambridge

    Google Scholar 

  • Cox H (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72

    Article  Google Scholar 

  • Curtin W (2000) Dimensionality and size effects on the strength of fiber-reinforced composites. Compos Sci Technol 60(4):543–551

    Article  CAS  Google Scholar 

  • Elman HC, Golub GH (1994) Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J Numer Anal 31(6):1645–1661

    Article  Google Scholar 

  • Evans A, Zok F (1994) The physics and mechanics of fibre-reinforced brittle matrix composites. J Mater Sci 29(15):3857–3896

    Article  CAS  Google Scholar 

  • Fukunaga H, Chou TW, Fukuda H (1984) Strength of intermingled hybrid composites. J Reinf Plast Compos 3(2):145–160

    Article  Google Scholar 

  • Golub GH, Van Loan CF (2012) Matrix computations, 3rd edn. JHU Press, Baltimore

    Google Scholar 

  • Greenbaum A (1997) Iterative methods for solving linear systems, vol 17. SIAM, New Delhi

    Book  Google Scholar 

  • Gupta A, Mahesh S, Keralavarma SM (2017) A fast algorithm for the elastic fields due to a single fiber break in a periodic fiber-reinforced composite. Int J Fract 204(1):121–127

    Article  Google Scholar 

  • Gupta A, Mahesh S, Keralavarma SM (2018) A fast algorithm for the elastic fields due to interacting fibre breaks in a periodic fibre composite. Int J Fract 211(1–2):295–303

    Article  Google Scholar 

  • Habeeb CI, Mahesh S (2015) Strength distribution of planar local load-sharing bundles. Phys Rev E 92(2):022125

    Article  CAS  Google Scholar 

  • Harlow DG, Phoenix S (1981) Probability distributions for the strength of composite materials i: two-level bounds. Int J Fract 17(4):347–372

    Article  Google Scholar 

  • Hedgepeth JM (1961) Stress concentrations in filamentary structures. Tech. Rep. RN D-882, NASA

  • Hedgepeth JM, Van Dyke P (1967) Local stress concentrations in imperfect filamentary composite materials. J Compos Mater 1(3):294–309

    Article  Google Scholar 

  • Ho N, Olson SD, Walker HF (2017) Accelerating the Uzawa algorithm. SIAM J Sci Comput 39(5):S461–S476

    Article  Google Scholar 

  • Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ibnabdeljalil M, Curtin W (1997) Strength and reliability of fiber-reinforced composites: localized load-sharing and associated size effects. Int J Solids Struct 34(21):2649–2668

    Article  Google Scholar 

  • Landis CM, McMeeking RM (1999) Stress concentrations in composites with interface sliding, matrix stiffness and uneven fiber spacing using shear lag theory. Int J Solids Struct 36(28):4333–4361

    Article  Google Scholar 

  • Landis CM, Beyerlein IJ, McMeeking RM (2000) Micromechanical simulation of the failure of fiber reinforced composites. J Mech Phys Solids 48(3):621–648

    Article  Google Scholar 

  • Mahesh S, Mishra A (2018) Strength distribution of Ti/SiC metal-matrix composites under monotonic loading. Eng Fract Mech 194:86–104

    Article  Google Scholar 

  • Mahesh S, Phoenix S (2004) Lifetime distributions for unidirectional fibrous composites under creep-rupture loading. Int J Fract 127(4):303–360

    Article  Google Scholar 

  • Mahesh S, Beyerlein IJ, Phoenix SL (1999) Size and heterogeneity effects on the strength of fibrous composites. Phys D Nonlinear Phenom 133(1–4):371–389

    Article  Google Scholar 

  • Mahesh S, Phoenix SL, Beyerlein IJ (2002) Strength distributions and size effects for 2D and 3D composites with Weibull fibers in an elastic matrix. Int J Fract 115(1):41–85

    Article  Google Scholar 

  • Mahesh S, Gupta A, Kachhwah US, Sheikh N (2019) A fast algorithm to simulate the failure of a periodic elastic fibre composite. Int J Fract 217(1):127–135

    Article  Google Scholar 

  • Mason JC, Handscomb DC (2002) Chebyshev polynomials. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Maxima (2014) Maxima, a computer algebra system. version 5.34.1. http://maxima.sourceforge.net/. Accessed 22 June 2019

  • Mishnaevsky L Jr, Dai G (2014) Hybrid carbon/glass fiber composites: micromechanical analysis of structure–damage resistance relationships. Comput Mater Sci 81:630–640

    Article  CAS  Google Scholar 

  • Mishra A, Mahesh S (2017) A deformation-theory based model of a damaged metal matrix composite. Int J Solids Struct 121:228–239

    Article  CAS  Google Scholar 

  • Murphy MF, Golub GH, Wathen AJ (2000) A note on preconditioning for indefinite linear systems. SIAM J Sci Comput 21(6):1969–1972

    Article  Google Scholar 

  • Okabe T, Takeda N, Kamoshida Y, Shimizu M, Curtin W (2001) A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites. Compos Sci Technol 61(12):1773–1787

    Article  CAS  Google Scholar 

  • Rezghi M, Elden L (2011) Diagonalization of tensors with circulant structure. Linear Algebra Appl 435(3):422–447

    Article  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems, vol 82. SIAM, New Delhi

    Book  Google Scholar 

  • Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869

    Article  Google Scholar 

  • Sastry A, Phoenix S (1993) Load redistribution near non-aligned fibre breaks in a two-dimensional unidirectional composite using break-influence superposition. J Mater Sci Lett 12(20):1596–1599

    Article  Google Scholar 

  • Sheikh N, Mahesh S (2018) Failure mechanisms and fracture energy of hybrid materials. Int J Fract 213(1):51–81

    Article  CAS  Google Scholar 

  • Smith RL (1982) The asymptotic distribution of the strength of a series-parallel system with equal load-sharing. Ann Probab 137–171

    Article  Google Scholar 

  • Swolfs Y, Gorbatikh L, Verpoest I (2013) Stress concentrations in hybrid unidirectional fibre-reinforced composites with random fibre packings. Compos Sci Technol 85:10–16

    Article  CAS  Google Scholar 

  • Trefethen LN (2013) Approximation theory and approximation practice, vol 128. SIAM, New Delhi

    Google Scholar 

  • Uzawa H (1958) Iterative methods for concave programming. In: Arrow KJ, Hurwicz L, Uzawa H (eds) Studies in linear and nonlinear programming. Stanford University Press, Palo Alto, pp 154–165

    Google Scholar 

  • Weibull W (1952) A statistical distribution function of wide applicability. J Appl Mech Trans ASME 19(2):233–234

    Google Scholar 

  • Wolla JM, Goree JG (1987) Experimental evaluation of longitudinal splitting in unidirectional composites. J Compos Mater 21(1):49–67

    Article  CAS  Google Scholar 

  • Xia Z, Okabe T, Curtin W (2002) Shear-lag versus finite element models for stress transfer in fiber-reinforced composites. Compos Sci Technol 62(9):1141–1149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivasambu Mahesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, S. A fast algorithm for fracture simulations representing fibre breakage and matrix failure in three-dimensional fibre composites. Int J Fract 222, 75–109 (2020). https://doi.org/10.1007/s10704-020-00432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-020-00432-8

Keywords

Navigation